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We show here a general model of phase separation in isotropic condensed matter, nanselyelastic
model We propose that the bulk mechanical relaxation modulus that has so far been ignored in previous
theories plays an important role in viscoelastic phase separation in addition to the shear relaxation modulus. In
polymer solutions, for example, attractive interactions between polymers under a poor-solvent condition likely
cause transient gel-like behavior, which makes both bulk and shear modes active. Although such attractive
interactions between molecules of the same component exist universally in the two-phase region of a mixture,
the stress arising from attractive interactions is asymmetrically divided between the components only in
dynamically asymmetric mixtures such as polymer solutions and colloidal suspensions. Thus the interaction
network between the slower components, which can store the elastic energy against its deformation through
bulk and shear moduli, is formed. This unique feature originates from the difference in mobility between two
components of a mixture. It is the bulk relaxation modulus associated with this interaction network that is
primarily responsible for the appearance of the sponge structure peculiar to viscoelastic phase separation and
the phase inversion: It suppresses short-wavelength concentration fluctuations in the initial stage, and causes
the volume shrinking of a more viscoelastic phase. We also propose a simple general law of the stress division
between the two components of a mixture, as a straightforward extension of that obtained in polymer mixtures.
We demonstrate that a viscoelastic model of phase separation including this new effect is a general model that
can describe all types of isotropic phase separation including solid and fluid models as its special cases without
any exception, if there is no coupling with additional order parameters. We show that this feature leads to a
phenomenon of “order-parameter switching” during viscoelastic phase separation, even if it is driven by a
single thermodynamic driving force. The physical origin of volume shrinking behavior during viscoelastic
phase separation and the universality of the resulting spongelike structure are also discussed.
[S1063-651%97)13510-3

PACS numbefs): 61.41+e, 64.75+9, 61.25.Hg, 05.70.Fh

I. INTRODUCTION its componentge.g., polymer solutions composed of long
chainlike molecules and simple liquid moleculea critical

Phase-separation phenomena are widely observed in vagoncentration fluctuation is not necessarily only the slow
ous kinds of condensed matter including metals, semiconmode of the system and, thus, we have to consider the inter-
ductors, simple liquids, and complex fluids such as polymersplay between critical dynamics and the slow dynamics of the
surfactants, colloids, and biological materials. The phenommaterial itself[3—6]. In addition to solid and fluid models,
ena play key roles in the pattern evolution of immisciblethus, we need a third general model for phase separation in
multicomponent mixtures of any material. Thus phase-condensed matter, which we call a “viscoelastic model”
separation dynamics has been intensively studied in the pakh,6].
two decades from both experimental and theoretical view- To describe the difference in the elementary dynamics
points[1]. From the concept of dynamic universality, phase-between the two components of a mixture, we need a basic
separation phenomena have been classified into various therodel that can treat the motion of each component sepa-
oretical models by Hohenberg and Halperi2]: For rately: such a model is known as a “two-fluid model.” The
example, phase separation in solids is known as the “solidhasic dynamic equations of the viscoelastic model have been
model(modelB),” while phase separation in fluids is known derived to understand the coupling between the stress and
as the “fluid modelmodelH)” [2]. For the former the local diffusion[7—-9] and also the unusual shear effects in polymer
concentration can be changed only by material diffusion, angolutions[9—14], which are known as “Reynolds effects,”
for the latter by both diffusion and flow. It has been estab-on the basis of a two-fluid modé&v,15,186.
lished that within each group the behavior is universal, and In this paper, we propose that we need some essential
does not depend on the details of the matdiiz?)]. modification to the “viscoelastic model” of phase separation

In all conventional theories of critical phenomena anddescribed above: We belied7] that the bulk relaxation
phase separation, however, the same dynamics for the twaodulus, which has been neglectéat, more strictly, not
components of a binary mixture, which we call “dynamic treated as an important physical fagtor previous theories
symmetry” between the components, has been implicitly asf12,13, plays as important a role in viscoelastic phase sepa-
sumed 1,2]. However, such an assumption of dynamic sym-ration as in gel phase separation. This modified viscoelastic
metry is hardly valid in various mixtures, especially in a model can describe any kind of phase separation in mixtures
material group of “complex fluids.” Recently we found that of isotropic condensed matter without any exception, if there
in mixtures having intrinsic “dynamic asymmetry” between is no coupling with an additional order parameter. In Sec. Il,
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we review the theoretical derivation of a viscoelastic model ) of o] s
based on a two-fluid model. In Sec. IIl, we discuss the inter- FmIX:J ﬁ—CV ¢ | pdr
nal modes of the material itself, and the resulting stress and

how the stress is partitioned between the two components. In of - - -
—J ﬁ—Cquﬁ [V-(¢vy)]dr

Sec. IV, we describe the basic equations of a viscoelastic =
model. In Sec. V, we discuss the origins of asymmetric stress

division, using a few examples. We also propose a general - - -

rule of stress division that is independent of the material. In :f (V-1I)-v,dr, (4)
Sec. VI, we discuss the generality of a viscoelastic model,

and demonstrate that all the models of phase separation ighere V- I1= ¢V[(3f/d¢p) — CV2¢] and II is the osmotic
isotropic condensed matter are special cases of a viscoelas{ig,sor. We also assume here that the forl%pacts on the

model. In Sec. VII, we discuss the viscoelastic suppressiogomponem' Thus the Rayleighian to be minimized is

of local concentration fluctuations in polymer solutions, fo-

cusing on the roles of a bulk relaxation modulus. In Sec. jdﬁ
;

J . N R R R o
VIII, we demonstrate that characteristic features of viscoelas-R= 3P0+ 5($)(v1—v2)?+(V-I)-v;—pV-v

ot
tic phase separation can be explained by a simple concept of
“order-parameter switching,” which originates from the - - . =
general nature of the viscoelastic model. In Sec. IX, we dis- ~ V1 Fi—va-Fal. ®)

cuss the universal nature of spongelike morphology charac-

teristic of a dynamically asymmetric mixture containing ain the above, the term containing the presspiis added to
fluid as its component. In Sec. X, we conclude our work. Inguarantee the incompressibility condition

the Appendix, we briefly mention the applications of vis-

coelastic phase separation to material science. V.v=0. (6)

Il VISCOELASTIC MODEL BASED The condition that the functional derivatives of the Ray-

ON A TWO-ELUID MODEL leighian with respect t61 ansz be zero gives the follow-

) ) ) _ing equations of motion:
Here we review how a viscoelastic model can be derived

on the basis of the two-fluid mod€l1-13 (see Ref[12] (9(¢>51)

for the details of the theoretical methodrhe model was P

originally derived to describe phase separation in polymers

[12,13, but we believe that the viscoelastic model should -

i ion i i i (1= P)v,] - - -

describe phase separation in any dynamically asymmetric — o)+ (1—d)VD+F 8
. . ; ) : ; {(v1—=v)+(1-¢)Vp+F,. (8

mixture, irrespective of the microscopic details of a system at

[5,6]. Thus here we focus special attention on how the most =

general version of the viscoelastic model can be derived. Lethus the average velocity obeys

us consider a two-fluid model of a mixture of components 1

and 2. Letv(r,t) anduv,(r,t) be the average velocities of i
components 1 and 2, respectively, aﬁ(f,t) be the volume at
fraction of the component 1 at pointand timet. Here we |, the quasistationary condition, the velocity difference be-

assume for simplicity that the two components have the samg,cen the two components, on the other hand, obeys
densityp. Then the conservation law gives ' ’

>

—V-II-{(v1-0,)+ $Vp+Fy,  (7)

-

Jv - - -

>

- 1 - - -
d Ul_UZZ_Z[(1_¢)V'H_(1_¢)Fl+¢|:2]- (10)

2=~V (dv)=V-[(1=)v,]. (1)
[1l. COUPLING OF INTERNAL MODES OF MATERIAL
WITH DEFORMATION AND THE DIVISION

OF THE RESULTING STRESS

The volume average velocity is given by

v=0v1+(1—P)v,. 2
poaH P)vz @ A. Origins of stress
The free energy of the systeR, is given by To obtain the form of the force; explicitly, we need to
c understand how the stress is partitioned between the two
Foo=| drl f(6(r)+ = (Vo(r)2|, 3 components, and also to havg:- the microscopic expression of
m f M)+ 5 (V) @ ihe stress tensor of the material. The macroscopic total force

. . _ F should be related t6; andF, as
wheref(¢) is the free energy per unit volume of a mixture

with the concentratio) of component 1. The form df(¢) E=V.o= Fi+F,. (11
depends upon the system; for example, it is given by the

Flory-Huggins free energy18] for polymer mixtures. Its Here o is the total stress tensor, which is, in general, given
time derivative can be written as by the constitutive equation of material. In a linear-response
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regime, the most general expressionogf is formally writ-  namely, the friction force against the solvent and the elastic
ten by introducing the time dependence of bulk and sheaforce due to the network deformation. Thitiss natural to

moduli in the theory of elasticity19] as think that 7 (k= 1,2) corresponds to the force of type (i),
t namely, the force acting on the component k by the motion of
Uij:f dt{G(t—t) & () + K(t=t")[V-0,(1)]5;}, the component Kuv,) itself, and not by that of the other
- (12) component. Thus we assume tigtis linear inv, :
where Fi=V- 0, (16
i ﬂvi r?vir 2 . . " ; ) )
Kr :&—)(i-Fa—)(j—a(V-vr)ﬁij. (13) o-ij):Jlxdt/{G( )(t_t,)Kk](t,)
Hereu, is the velocity relevant to the rheological deforma- +K<k)(t—t’)[€-Jk(t’)]éij}, 17

tion, andd is the spatial dimensionalityG(t) andK(t) are
material functions, which we call the shear and bulk relax-where
ation modulus, respectively. Here it should be noted that
K(t) does not contain the bulk osmotic modulus, vl vl 2 L.
Kos= ¢%(0°f19¢%). We have the relationy=[5G(t)dt, KE:W—FW_H(V'UK)&]- (18)
where 7 is the viscosity of the material. ' !
The second term of Eq. (12) is newly introduced t0 inCOr(gre the unknown factors become the functional shapes of

porate the effect of volume change into the stress tensqg(k)(t) and K®(t) for the motion of the componerk, in-
[20,21]. In a two-component mixture, the mode associatedstead ofa

with V-v, can exist as far as,#v, even if the system is Using the stress division parameterg, we obtain the

incompressible. It should be stressed that its diagonal natukg|lowing relations betwee® andG*) and also betweeK
leads to the direct coupling with diffusion: note that the 5nqK *)-

effective  osmotic  pressure is given by 7°f

=[p(aflag)—f]— [ dt'K(t—t")V-v,(t"). We believe, chHg®@

thus, that this term is important even in the case of polymer C= 0 2~ (19
solution, as described below, although this term has so far G+ a6

been ignoredor, more strictly, not treated as an important

physical factoy in the previous theoriegl1-14. KK @

"= 2K+ 02K @ (20
P L 2 1
B. Estimation of the stress division parametera,

Here we consider the physical meaningof In a linear-  These functionss™ andK® express the rheological prop-
response regime, the rheological velocity is generally —erties of the material responding to the veloaity. The fact

given by the linear combination of, andv, [12,14: thatv, andv, are coupled with each other makes the esti-
) mation of the rheological functions difficult.

Ur:Cl’ll;l+ (1’2172. (14)

Then the next problem is how the stress is partitioned be- D a, or Fy

tween the two components. SinEev, should be equal to  The estimation of the stress division Bfinto F; andF,,
F,-v1+F, v, in the Rayleighian, we have the following Which is given by the stress division parametgr, formally
stress division: looks simpler than the direct estimation of the above rheo-
logical functions,G™ and K(®: this is true for a nearly
Fi=a;F, Fo,=aF. (15)  symmetric stress division, as in the case of a polymer mix-
tures: More strictly speaking, when the dynamics of both
Herea;+ a,=1 from Eq.(11). components is governed by the same mechanigns use-
ful to estimate the stress division.
C. Direct estimation of E, However, the physical meaning of the latter is clearer than
] ] _ the former in a case of a strongly asymmetric stress division:
nge we consider the meaning of the forces from a qn°fer—|n polymer solutions, for example, the mechanism of poly-
ent viewpoint. The forces acting on the componlertre (i) mer dynamics is essentially different from that of solvent
the friction betwgen thg compqnelntanq the other COMpPO-  dynamics; and, thus, the rheological functid®® andK®
nent due to their relative motion, ar(d) the rheological  gre more useful tham, (see Sec. Y.
coupling between the componekt and the surrounding
rheological environment including the componéanitself.
This can be easily understood by considering a gel that is
composed of a polymer network and a solvent, as an ex- Here we summarize the basic equations describing a vis-
ample: The motion of polymer is affected by the two forces,coelastic model:

IV. BASIC EQUATIONS OF A VISCOELASTIC MODEL
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d R .. .. in which the interpolymer attractive interaction produces the
=V (¢v)=V-[@(1-¢)(v1va)], (2)  temporal contact pointicross linking between polymer
chains. If we assume that the lifetime of the temporal contact
L 1—¢f - R b - between chains is,, we expect that the bulk relaxational
vi—v,=——— V- II-V. oY+ —V~¢r<2>}, moduluskK ((t) has a relaxation time of the order of. 7,
4 1-¢ 22) likely obeys the Arrhenius-type lawz,= roexpE/ksT) (kg
is the the Bolzmann constantere the bonding enerdy is
v R R R likely proportional toT,—T (T, is the # temperaturgnear
P = —V-II+Vp+V-0V+V.o?, (23) T, and also dependent upon the distance and orientation of

the relevant segments. Even in polymer solutions, thus, we

We also need Eqg2), (6), and(17), and the information on expect thatK(l?(t) plays an important role_ in viscoe_lastic
the stress division. Here it should be noted that we neefiN@s€ separation, in contrast to the previous thegfis

phenomenological or microscopic theories describing the-4l: The transient network of topological origin itself (en-
forms of G(t) andK(t), or those ofia® andK®_ Since we tanglement effects) might not lead to the bulk relaxation

derive the above basic equations, relying only upon a tWOmode, while the transient network formed by attractive inter-

fluid model, they should be independent of types of materia@ctions does clearly make the bulk relaxation mode active.
and quite general We believe that it is this mode that is primarily responsible

for the volume shrinking behavior of a more viscoelastic
phase observed in our experimefs6]. The characteristic
decay time ofG(M(t) is likely longer thanr,, since repta-

Here we focus on some specific problems to gain deepeionlike motion is additionally required for the polymer mo-
insight into the origins of stress, and how the resulting stresg§on under the temporal network formed by the attractive
is partitioned between the two components of a mixtureinteraction. We need further theoretical studies to find quan-
Then we consider some general features of asymmetric strefitative expressions o&(t) andK(t) in a poor solvent.

V. ASYMMETRIC STRESS DIVISION

division. Relating to the above transient gel model, we speculate
that a polymer solution behaves as a physicaluy@ersally

A. Examples of asymmetric stress division at least at a high polymer concentration under a strongly

poor-solvent condition. The existence of special junction

1. Polymer solutions: cases of good ar@isolvents points is not a prerequisite for the formation of such a tran-

In this case, the stress division has already been given ifient gel. The transient pairing of any parts of two chains can
the literature[11-14: a;=1 anda,=0, provided that the b€ regarded by a temporal cross linking. Any pair of seg-
component 1 is a polymer and 2 is a solvent. However, thighents of polymer chains can form a temporal cross linking
division itself is based indirectly on the estimation®f®,  POint, irespective of interchain or intrachain interaction. The
since the stress division parameters cannot be determindtiobability of its formation is determined by the balance be-
precisely. It should be stressed that there is no direct way t§veen the intersegment attractive interaction depending upon
determinex; anda, from the first principle. Thus there is no the geometrical configuration of chains and the thermal en-
firm basis f0r5r=51 in a polymer solution, as pointed out by ergy. Thus the most probable candidate for the contact point

: . . : is an entanglement point. The sol-gel transition can be given
aoLh?gdcgsneuk&ézﬁeﬁlécgu?hggt S(F;)Lpg airss rﬁgﬁlcﬂzur;a;?l' simply by the criterion that the transient network formed by

physically easier to understand than EfR), as described in interpolymer attractivg intere}ction is percolated at any mo-
Sec. 1D K ment. A polymer chain having at least two contact points

. ety with other different polymers plays the role of a junction
The topological entanglement can be “felt” only by poly- oint of a usual physical gel. If we assume simply that the
mers, and never by solvent molecules. TI@)(t) is ap- P Pty get bY

proximately given by the existing polymer-solution theory topological entangl_ement_ point is .the. only candidate for a
122] [GY(1)=G(1)] andKD(1)~0 [11-13, if the solvent Eieormgra_l cross linking point, the criterion for physical gela-
, X given by
is not poor On the other handz(?)(t) is an extremely fast
decay function and, thus, the solvent viscosjtyis obtained N
as 7,=[5dtG?)(t). Since the solvent has no large internal N EXAE/ksT)=2, (24)
degrees of freedom, we can safely assume kH&t=0. ¢
whereN is the degree of polymerization of the polymer, and
2. Polymer solutions: a case of a poor solvent N, is the degree of polymerization between entanglement
It should be stressed that the phase separation of a pol __oints. Further gquantitative studies along the above line are
mer solution always occurs in a poor solvent, and, thus, th8ighly desirable.
case of a poor solvent is extremely important when we con-
sider critical phenomena and phase-separation phenomena.
Unfortunately, however, there do not exist any established In the case of a mixture of polymers 1 and 2, whose
theories that describe quantitatively the polymer dynamics irdegrees of polymerization afd; and N,, respectively, the
a poor solvent. In a poor solvent, we need to consider thstress produced by the motion of polymer 1 can be different
attractive interactions between polymer chains seriouslyfrom that produced by the motion of polymer 2. Intuitively,
Thus the most natural model is a transient gel m¢@@J21]  the motion of a longer chain causes stronger stress than that

3. Polymer mixtures
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of a shorter chain does. Following the Brochard theory ortunately, we do not have a reliable theoretical basis even for
mutual polymer diffusiori23], which is based on a reptation a simple liquid-glass transition, and, thus, it is difficult to
theory that mainly deals with the effect of topological con-find specific quantitative expressions fdg at present.
straints(tube on entangled polymer chains, Doi and Onuki Phenomenologically, however, it is known th&®(t)

[12] explained how the stress should be divided by the two=Gyexd — (t/7)?] and 7~ roexd B/(T—To)], where 8 is the

polymers with different lengths. According to them, stretching parameter @gB<1) and T, is the so-called
L ) ) Vogel-Fulcher temperature. It should be stressed again that
Vr=vr=av1t ags, (250  we have to take into account the effects of attractive interac-
tions between the same species on their dynamics b&low
N [26].
. Lk dNy 26)

{118 dNi+(1-¢)Ny’ , ,
5. Colloidal suspensions

whereuv is the tube velocity. Heré, is the friction of the It is well known that the addition of enough of nonabsorb-
componentk with the tube surrounding it{, is given by ing polymer to an otherwise stable colloidal suspension can
&= (N Lo /Ng) [12], where ¢y is the volume fraction of induce phase separatiaia the depletion mechanism. Col-
the componerk, ¢, is the microscopic friction constant, and loidal suspensions form a transient gel state in the initial
N is the average degree of polymerization between the erstage of phase separati¢87] in much the same way as
tanglement points. The resulting stress division is given byolymer solutions do. We believe that the essential features

|Ek= akv*.g [12]. Here it should be stressed that is the of colloid phase separation can also be well described by our
very essential quantity in the sense that it represents th¥iscoelastic model. The dynamic asymmetry in colloidal sus-
coupling strength between the component k (the volume frag?€nsions simply comes from the size difference between col-
tion of ¢,) and the surrounding rheological environment. l0ids and solvent molecules.

Near and below a critical poinT., however, we also
have to consider the role of the attractive interactions be-
tween the same kind of polymers, which increases the rheo-
|ogica| Coup"ng, name|yé’k_ For examp]e, this leads to a Here we consider the problem of what is the most basic
slower diffusion constant than that predicted by a reptatiorPhysical factor that is responsible for asymmetric stress di-
theory which concerns only topological effects and neglect¥ision, on the basis of intermolecular or interparticle interac-
energetic interactions between polymers. The inclusion ofions. The network of attractive interaction is universally
energetic interactions is a prerequisite to a more precise déormed when a mixture is quenched into its metastable or
scription of polymer dynamics. However, the following fact unstable state, since there exist attractive interactions be-
should be mentioned: High-molecular weight polymer mix-tween the same components. In dynamically symmetric mix-
tures often mix at a lower temperature, and demix at a highefures, the interaction network always relaxes in its equilib-
temperature. In such a case, energetic interactions likely plafjum state much faster than the phase-separation process. In
more important roles in polymer dynamics in the one-phasélynamically asymmetric mixtures, however, the relaxation

B. Physical origin of asymmetric stress division

region rather than in the demixing region. time of the interaction network is different between the two
components because of the mobility difference. This consid-
4. A mixture of components having very different eration, based on microscopic interactions, leads to the con-
glass-transition temperature§T ;) clusion thathe dynamic asymmetry between the components

In thi | ¢ tric st divisi of a mixture is the essential origin of asymmetric stress di-
_ N this case, we also expect an asymmetric Sress VISR, Thyg the phase-separation behavior of any dynami-
since the two kinds of component molecules are expected

t8ally asymmetric mixtures including the aboVéecs.

“feel” very differenftly the rheological environment as in the V A 1-V A 5] should be essentially the same and described
case of polymer mixtures, even if the mean-field rheologlcaby Egs.(21)—(23)

environment surrounding them is the same. We have actually
observed viscoelastic phase separation in a mixture of poly-
mers having very differenTy's, whose behavior is essen-
tially the same as that of polymer solutiof. It is easy to On the basis of the above examples, we discuss a general
imagine that a highFy component has less friction with the rule of the stress division in viscoelastic matter. Here we do
local rheological environment than a loly:component. Re-  not consider elastic matter where the elastic coupling plays
cent theoretical studies on supercooled binary liqig§,  an important role in addition to the friction. In the preceding
based on the mode-coupling approximation, support such @iscussion, we obtained the general relation giver fby.
picture. If we formally introduce the coupling strendthfor  (14)], v, = a0, + as,, With ay+a,=1. For the relative

the componenk that is proportional tap,, the stress divi- motion of the componeri having a velocity ofv,, to the

sion can be expressed by the same relation as in the aboygs,n field rheological environment having a velocityof
case of polymer mixtures. The mean-field rheological envi-

ronment in this problem of a glass transition is the so-called€ friction force is given byl (v, —vy), where{y is the
“cage” [25]. The concept of a “cage” in the glass transi- average friction of the componekitand the mean-field rheo-

tion is quite similar to the concept of a “tube” in polymer logical environmentaat point, where the volume fraction of
mixtures.The escape time of a molecule from a “cage” or k component is¢,(r). Here {,= ¢ {x and ¢ is propor-
“tube” gives a relaxation time of5(t) in both cases. Unfor- tional to the friction between an individual molecule of the

C. A general rule of stress division
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componentk and the mean-field rheological environment, id . d(1—¢)? . — ¢ =
which we call the generalized friction parameter. Because of —-=V- —7 V-II-V.- o'+ HV ol
the physical definition of the mean-field rheological environ- (30)

ment, the two friction forces should be balanced. This fact

guarantees that the rheological properties can be described this case, the softer phase forms a networklike phase be-

only by v, as in Eq.(12). Thus we have the following rela- cause the deformation of the softer phase costs less energy

tion, in general: than that of the harder phag28]. It should be stressed that

.. L the force balance condition plays no roles in determining the
L1(v,—vq) + (v, —vy)=0. (27 morphology. This fact causes the striking difference in mor-

phology between an elastic solid model and an elastic gel or

From Eqgs(14) and(27), we obtain the general expression of asymmetric viscoelastic modgs]: In the former the softer

the stress division parameter, : phase forms the networklike structure, while in the latter the
harder phase does.

Ay

= (29 B. Solid model
D181+ b2l

If we assume dynamic symmetyno dependence of
o _ _ _ _ ~andKjy on ¢) further, it reduces the solid modéhodel B
The above relation is consistent with a simple physical pic{2]). This is because we have a symmetric stress division of

ture in which the friction is only the origin of the coupling él_ ¢),51:¢|32. Here it should be noted that the condition
between the motion of the component molecules and th —K,=0 is unnecessary, and only symmetry in elastic

rheological medium. The a_lb_oye r_elation is a str_aightforwar roperties between the two components is required. In this
extension of the stress division in polymer mixtufd2], 546 the basic equation becomes the simplest diffusion equa-
wherev, is the tube velocity 1. We expect that this relation tjon

holds, irrespective of the microscopic details of rheological

models, and, thus, we can apply it to a mixture of any ma- d¢
terial, the motion of both of whose components is described t o
by a common mechanism. However, it should be stressed
thatthis relation is not useful for mixtures whose components
have essentially different mechanisms of molecular motion
as in the case of polymer solutioria polymer solutions, for If we assume only dynamic symmetry between the two
example, the motion of polymers is essentially different fromcomponents of a mixture, it reduces to a new “symmetric
that of solvent molecules in the mechanism. In the standardiscoelastic model.” In this case, we have a trivial stress
rheological theory of polymer solution§(t) itself is esti-  djvision F;= ¢V -0 andF,=(1—¢)V- 0. That is, ay= ¢
mated as the sum of the polymer contribution and the solverfnq ,—1— ¢. The rheological function&® can be esti-
contribution. Thus the stress division cannot be simply deyateq aGM(t) = ¢G(t) andGA(t) =(1— $)G(1). In this
scribed by Eq(28). In such cases, E¢17) is more useful, as
mentioned in Sec. Il D.

[V-11]. (31)

C. Symmetric viscoelastic model

particular casey,=v, and, accordingly, there should be no
contribution of the bulk relaxation modulus under the incom-

pressibility condition § - v =0). The basic kinetic equations

VI. GENERALITY OF A VISCOELASTIC MODEL are given by
Next we briefly discuss the generality of the above vis- i ) L p(l—-g)2
coelastic model described by Ed21), (22), and(23) [20]. o =V (¢pv)+V- TV-H, (32

This model including the bulk volume relaxation mode is
quite a general model, as shown below. We describe below 5

i i i v > >
how the viscoelastic model reduces to various models under po=—V.M+Vp+V.o. (33)
some assumptions. at

A. Elastic solid model Sincev, =v, the gross variables describing the dynamics are
only ¢ andv. Here it should be stressed that the rheological

If we assume thaG(t) = u(¢) (u is the shear moduliis ) —
function G(t) does not depend upon the locatiorbecause

andK(t)=Ky(¢) (Ky is the bulk modulusand v=0, this . ) - -
model reduces to the model of an elastic solid mdag].  Of the dynamic symmetry. Using the relatidhv =0, thus,

Since the time integration of the velocity becomes the defor-

mationu, the stress is given by F=V.o= ft dt’G(t—t’)VZJ(t’). (34)
&Uj (9Ui 2 . . N -
7ij = p(¢) (9_)(i+ﬁ_Xj_ g (VWi | +Ke( (V-1 We also have the relation
(29
A i 3
Thus the basic kinetic equation is given by imtem Ty [V-1], (35
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although it is unnecessary for solving the problem. gime where the order parameter dynamics is only the slow
This model describes the dynamics of dynamically sym-mode in the systerj¥,5].
metric polymer mixtures. It should be stressed that this Viscoelastic effects can be parameterized by the so-called
model is different from the fluid modémodelH) described viscoelastic Iengthf\,p(Dgrt)l/2 originally introduced by
below. Thus there remains a possibility that there is a nevBrochard and de Genngg], where 7, is the characteristic
polymer effect relating to this model: For example, we ex-time of rheological relaxation anB, is the diffusion con-
pect an unusual feature in the initial stage of phase separatignant. For length scales longer th&apn, concentration fluc-
where the deformation rate is large. The polymer effect cortuations decay by diffusion, while for length scales shorter
responding to this was first pointed out by de Genig%, than £, viscoelastic effects dominaf&,12,13. This is a
and was very recently studied in detail by Kumaran and Fresimple mapping of the dynamic crossover in which, on a
derickson[30]. time scale longer tham,, diffusion dominates concentration
fluctuations, while on a time scale shorter thariscoelastic
D. Fluid model effects dominate. The critical regime is, thus, described by

the conditioné>¢,., where ¢ is the correlation length of

intel,\frnwj ?r?esglrgeiégﬁims gﬂﬁ;mn?gfer:i; ]Eglrjfl_?esft;’; %trr:%n dg}%oncentration fluctuations. This condition can also be written
g 'as 7.> 7, wherer, is the characteristic time of the critical

P _ 27 . . .
we further have the relatioR - o= 5V“v. Thus the model concentration fluctuations. Thus we need to consider whether

reduces to the fluid modémodelH [2]) we can easily approach the critical regime that is defined by
9 H(1— )2 the above criterion, in a viscoelastic system. A more detailed
—=-V-(¢0)+V- ———V 1I, (36)  consideration of this problem oftrinsic nonuniversality
ot 4 will be described elsewhere.
v = > VII. VISCOELASTIC SUPPRESSION OF LOCAL
—=-V-II+Vp+yV. '
P ="V VPtV @7 CONCENTRATION FLUCTUATIONS
IN POLYMER SOLUTIONS
E. Elastic gel model A. Fluctuation suppression due to bulk relaxation modulus
If we assume onlc = u( @) andK=K,(¢), it reduces to According to the continuity equation, E(L), we have the

the elastic gel moddi31,32 that describes phase separationrelation

in elastic gel. The basic equations are essentially the same as

those of viscoelastic phase separation in a polymer solution ip - 5 -

[Egs. (21), (22), and (23)], except that the stress tensor is ot “Véru1=¢Vouy. (38)
given by

i Here we assume that component 1 is a polymer and that

oub oul 2 : : :
(1 e W SN BRI 3 o component 2 is a solvent. In the above equation, the first
i =m($) X * x; g (V)0 | FKe(B)V-UD 8 oy on the right-hand side simply describes the translational
_ . transport of polymers to a poinjt by the locally uniform
NCI vy dvy 3(6-52)5-- _ velocity field v;, while the second one describes polymer
. % ax; d b diffusion toward or from a point. Thus the first term is

_ . ~ associated only with the change in the spatial pattern of the
In this case, when the elast|_c energy overcomes the mixingoncentration distribution, while the second term is respon-
free energy, phase separation stops and the coarsening gible for the change in the concentration distribution itself. In

domains is pinned. the initial stage of phase separation, the major process is the
diffusion process leading to the change in the concentration
F. Generality and intrinsic nonuniversality distribution itself, and there are few changes in the spatial

attern of the concentration distribution. Neglecting the first

Since any phase separation in all isotropic condensed m arm in Eq.(38), thus, we have the relation

ter can be classified into solid, elastic solid, elastic gel, sym-
metric and asymmetric viscoelastic, and fluid models, the i
above viscoelastic modésee Sec. 1V, including both shear — p= _6.51_ (39
and bulk relaxation stresses, should be a universal model Jt

describing phase separation and critical phenomena in isotro- ) L
pic matter without any exception. The left-hand side of the above equation is inversely propor-

However. this model is not universal in the usual sense ofional to the characteristic time of the concentration change,

critical phenomena, since it requires some microscopic thegfs- ON the other hand, the bulk relaxation modukigt),
ries describing the rheological properties of the matter. In théhat is directly coupled witlV - v, has a characteristic decay
extreme limit of strong dynamic asymmetry, the elementantime of ,, which is related to the characteristic time of the
slow dynamicginternal modg of material affects the critical transient crosslinking between polymer chains in a poor-
fluctuation even near the critical point, in contrast to thesolvent condition. Ifr,> 7, , the rapid growth of concentra-
concept of the dynamic universalif2]. Thus there is a pos- tion fluctuations characteristic of spinodal decomposition is
sibility that we cannot experimentally approach a critical re-suppressed severely and may even be prohibited, <7, ,
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on the other hand, there are few elastic effects, and the comlescribed in Sec. VI, we believe that the latter plays an
centration fluctuations can grow as in typical spinodal deimportant role in the suppression of concentration fluctua-
Composition_ tions in the initial stage.

For 74> 7,5 the primary order parameter is the composi-
tion in usual classical fluids, while fory< 7 it is the de-

If the above mechanism of the suppression of concentraformation tensor ;; = du; /9x; + du; /dx;) as in elastic gels.
tion fluctuations works efficiently, spinodal decomposition In the elastic regime, the force terms can be included in the
cannot proceed further after the crossover betwgeand  Hamiltonian as in the case of gel. Then the free-energy func-
74. Thus the type of phase separation switches from spinional is formally written only by the deformation tenst
odal decomposition to nucleation and growth. More strictly@Sf(dij). Thus, we can say that the order-parameter switch-
speaking, the concentration fluctuations grow only locally inind iS & result of the competition between two time scales
the solvent-rich region where, is short and diffusion takes characterizing domain deformatiory and the rheological
place easily. Such behavior is actually observed in our exproperties of domalnsts._Thls is a kind ofviscoelastic re-
periments 5]. The crossover from an initial fluid state to a laxationin pattern evolution.
transient gel state likely takes place almost immediately after
the temperature quench, since the long-range diffusion or
motion of molecules is not required for the formation of a We next consider how,s and 74 change with time during
transient networksee also Sec. VIl §. After the formation  phase separation. In the initial stage, the velocity fields grow
of a transient gel state, the “mechanical instability” that is aas v~ (kg TK/37&) A ¢?, whereA ¢ is the composition dif-
universal feature of the “soft” network of attractive interac- ference between the two phases ahds the correlation
tions leads to nucleation-growth-like behavior. In the follow- length, or the interface thickness. Sinke approaches &,
ing, we discuss the concept of “order-parameter switching”(¢e is the equilibrium compositionwith time, this expres-
resulting from the crossover between the characteristi§ion ofv reduces to the well-known relatian~y/ 7 (y is

phase-separation time and the internal rheological time. ~ the interface tensign in the late stage[note that
y~kgTK(2¢¢)%/3¢]. Thus the characteristic deformation

B. Spinodal decomposition vs nucleation and growth

B. How does order-parameter switching occur?

VIIl. ORDER-PARAMETER SWITCHING time 74 changes with time asy~R(t)/v (1) ~R(1)/A $(1)*.
In the initial stage, the domain size does not grow so much
A. Order-parameter switching between composition with time, while A ¢ rapidly increases with time, and, ac-
and deformation tensor cordingly, 74 decreases rapidly. On the other hang, in-

Here we consider the dynamic process of viscoelasti€®ases steeply with an increase A, reflecting the in-
phase separation on the basis of the viscoelastic relaxatidfi€@S€ in the polymer concentration in a polymer-rich
phenomena described by E@.2). The quantitative feature dpmaln. Thusr,; becomes comparable tQ in the interme-
of the dynamics can be understood on the basis of a conceg te stage of phase separation. Onge: s, the slower
of “order-parameter switching[20]. Phase separation is Phase cannot follow the qleformatlon sp_eed and behaves_as
usually driven by a thermodynamic force, and the resulting®" €lastic body: The elastic energy dominates the coarsening
ordering process can be described by the temporal evolutioRrocess in the intermediate stage. Next we consider the late
of the relevant order parameter associated with the thermcede: Sincel ¢ approaches &, and becomes almost con-
dynamic driving force. The primary order parameter describStant in the late stagery (~R7/y) increases with an in-
ing phase separation of a binary mixture is a compositiorf"€@s€ iNR, while 7 becomes almost constant. Thug
difference between the two phases. Besides exceptional casd@ain becomes longer thag. In short, 74> 75 in the initial
where phase separation and other ordering processes suchS$9€:7¢=Tis in the intermediate stage, ang¢> ;s in the
superfluidization, gelation, liquid-crystallization, and crystal-12t® stage again. Accordingly, the order parameter switches
lization, simultaneously procedd] [in other words, there from the composition to the deformation tensor, and then
are more than two kinds of thermodynamic fordesder switches back to the compqsmon again. This is _the first case
parametend, a phase-separation process is usually characteRf “order-parameter switching” during an ordering process
ized by a single order parameter. In the viscoelastic modefiiven by a single thermodynamic driving force, to our
on the other hand, the phase-separation mode can B&owledge.
switched between a “fluid mode” and an “elastic gel
mode.” This switching is likely caused by a change in the C. Further consideration on G(t) and K(t): Kinetics
coupling between stress fields and velocity fields, which is of transient gel formation
described by Eq(12): Equation (12) tells us that these  Here we briefly consider the viscoelastic functidBét)
two éulgmate cases, namely,(i) the fluid model 5nq K(t), which are dependent upon the material. In the
[«f,V-v,~cons] and (i) the elastc gel model above discussions, is assumed to be a function df¢p.
[G(t),K(t)~consi, correspond tor>7q and rs<74, re-  However, this picture is not necessary true. In polymer solu-
spectively. Herery is the characteristic time of deformation, tions and colloidal suspensions, for example, the transient
and 7 is the characteristic rheological time of the slower gel-like structure is likely formed very quickly after the
phase. There can be two typesmf: One is associated with quench. This is because the diffusion of polymers or colloi-
the characteristic decay time 6f(t), and the other with that dal particles over a large length scale is not required to form
of K(t). We think that the former is generally longer than thethe interaction network. The diffusion length schis of the
latter in polymer solutions, as mentioned in Sec. V A 2. Asorder of polymer or particle siza near the critical compo-
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sition (¢); thus the time required to form a network is hand, the interface energy is estimatecy&s . For mac-
~a?/D,, whereD, is the diffusion constant of a polymer or roscopic domains, thus, the elastic energy is much more im-
particle. In such a case, very rapidly increases to the order portant than the interface energy in the intermediate stage
of 7,, within a time of ~a%/D, after the quench. In such a wherery< 7. Accordingly, the domain shape is determined
case, the first order-parameter switching from composition tgyy, the elastic force balance conditio¥ (o™ ~0), which
deformation tensor occurs within a very short periodjeads to networklike or spongelike morphology. In the initial
(~a?/D,) after the quench: The system enters into an elastigng |ate stages of phase separation whege s, on the

regime just after the quench. _ _other hand, the interface energy dominates the domain shape,
The diffusion length scalé increases with a decrease in gjnce;,~0.

polymer or colloid concentratiogh. If a percolated network

cannot be formed within a sufficiently short time, a quasiho- IX. UNIVERSALITY OF SPONGE MORPHOLOGY

mogeneous transient gel state is not realized due to phaseCHARACTERlsnc OF A MIXTURE HAVING BULK

separation, and, thus, a networklike phase-separated pattern COMPRESSION MODES

is not formed; instead, a droplet pattern is forniéfl This

criterion may cause the threshold composition between drop- A. Universality of sponge morphology

let a_nd netlwork phase separation. ) ) Here we discuss the universal nature of a spongelike mor-
Finally, it should be stressed that to describe this networ hology (or the formation of a continuous structure by a

formation process and the resulting qhange in viscoelastiﬁqinority phasg and its physical origin. It is known that gel
functions, G(1) andK(t), we need a microscopic model of \nqergoing a volume-shrinking phase transition forms a

each system. bubblelike structure[31,33,34. The competition between
phase separation and gelation or a glass transition also causes
D. Volume shrinking behavior: Absence of self-similar a spongelike morphologB5—37. The physical origin of the
pattern growth in viscoelastic phase separation appearance of a honeycomb structure in plastic foéas,

Because of the order-parameter switching, there is n®olystyrene foam and urethane fopim also similar to ours.
self-similarity in the pattern evolution of viscoelastic phaseAll these processes have a few common featuig#\ mix-
separation. In the elastic regime, further, the volume ratidure contains a fluid as a componefit) Holes of a less
between the two phases changes with tifBes,20, and, viscoelastic fluid phaségas in plastic foam, water in gel,
thus, there is no proportionality between interdomain dis-Solvent in polymer solution, and so omre nucleated to
tance and domain size. This behavior even leads to phagBinimize the elastic energy associated with the formation of
inversion when the more viscoelastic phase is a slightly mi& heterogeneous structure in an elastic mediiim.Then, a
nority phase in equilibrium: in the initial stage a less vis-more viscoelastic phase decreases its volume with time. This
coelastic phase forms droplets, while in the final stage &°lume shrinking process is dominated by the trangdefr
more viscoelastic phase does. This means that there are f4ion or flow of a more mobile component under stress
least two length scales that change differently with time fields, from a more viscoelastic phase to a less viscoelastic
This is also related to the absence of any characteristic lengfthase. The above picture suggests the possibility that a spon-
scale in elastic deformation. gelike structure is theniversal morphologyor phase sepa-

Here we make a rough estimate of volume shrinking ki-ration in systems in which only one component asymmetri-
netics. The elastic regime should be analogous to the volum@@lly has elasticity stemming from either topological
shrinking of gel. The characteristic shrinking timg,, is  CONNectivity or attractive interaction. .
likely dependent upon the characteristic length sdalas We also point ou(6] the similarity of these patterns in
L2/D (D is the gel diffusion constaig]). It should be noted condensed matter to the spongelike structure of the universe
that only the length scale in this problem is the length scaléthe large-scale galaxy distributipf38]. We speculate that
associated with the “mechanical instability,” that is, the the gravitational attractive interaction, which is stronger be-
characteristic distance between solvent hdlgs.. Neglect- ~ Ween hgawer matter, may play a _role similar to the elastic
ing the time dependence df, ., we obtain a very rough Network in producing the spongelike large-scale structure.
estimation of the volume shrinking time &g~ L2,/ D This explanation seems to be consistent with a standard pic-
which can be a very long time. The estirrr{nationhl(zlqh " ture of the universe evolutiofa gravitational-instability

. ole:

including its time dependence, requires a stability analysiénOdeD that such a heterogeneous structure develops by

under the influence of phase separation. We need furthg,rawt.atlongl amplification of density fluctuations. .
study on this problem. This universal appearance of sponge structures in the

phase separation of these systems originates from the volume
phase transition, or, more strictly, the elastic phase separa-
tion of a dynamically asymmetric mixture that is composed
Since the deformation tensor intrinsically has a geometriof a network-forming component and a fluid (such as a liquid
cal nature, the pattern in the elastic regime is essentialland a gas) The elastic network can be a real one as in gels
different from that of usual phase separation in fluid mix-(permanent netwopk and polymer solutiongtransient net-
tures. The domain shape during viscoelastic phase separatiarork), or a virtual one due to attractive interactions. In the
is determined by whether the elastic or interface energy i$ormer, a real structure having large internal degrees of free-
more dominant. Roughly, the elastic energy is estimated adom can store the elastic energy for bulk compression, while
we’RY (e is the strain andl is the spatial dimensiongor a  in the latter the virtual network due to attractive interactions
domain of sizeR, since it is the bulk energy. On the other can also store the elastic energy. In this sense, we can con-

E. Pattern selection: elastic energy vs interface energy
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clude that the existence of both the component having a bulklow-component-rich region selectively. Thus a similar be-
(relaxation modulus and the fluid component is a prerequi-havior of the phase inversion has been observed even in the
site for the formation of a spongelike structure due to theframework of a solid moddimodelB) [39]. As discussed in
volume shrinking of one phase. Sec. V B, the physical factor responsible for the asymmetric
For example, such phenomena are never observed in soliiress division in a fluid mixture is dynamic asymmetry be-
mixtures, except for the case where the mobility is stronglytween the two components of a mixture. This strongly indi-
dependent upon the compositi¢89]. Phase separation of Cates that the most essential physical origin of volume
elastic solid mixturege.g., metal alloysdoes not accom- shnn}qng behavior and the r(.asultlng”phase inversion is the
pany a drastic volume change of each phase if there is ngoexistence of “asymmetry in mobility between the two
strong composition dependence of mobility. This differencecomponents of a mixture” and “attractive interactions,” ir-
causes a marked contrast between elastic phase separatiof&gPective of whether a mixture is solid or fluid.
solid mixtures and viscoelastic phase separation; in the
former, a softer phase always forms a continuous phase to C. Roles of shear relaxation modulus on the formation

minimize the total elastic enerdyt4], in contrast to the lat- of a networklike structure
ter. We have already discussed the roles of the bulk relaxation
modulus, namely, the suppression of the homogeneous
B. Physical origin of volume shrinking growth of concentration fluctuations. Here we focus our at-

We briefly discuss the physical meaning of the above crif€ntion on the roles of the shear relaxation modulus. An im-
teria for the formation of a sponge structure, or relative vol-Portant fact is that the bulk relaxation modulus is closely

ume shrinking of a more viscoelastic phase. This is related t&¢lated to the diffusion while the shear relaxation modulus is

the fact that in a two-fluid mode¥ - v, needs not be zero Ot The bulk stress gradieRt o, is usually(at least in the

even under the incompressible condit®mns =0 for the av- initial stage in the same orientation as the osmotic stress

erage velocity. There are three important factors in this propdradientV -1, since both are related to the diagonal part of
lem: (i) whether or not the componektis compressible in a the deformation velocity -v,, as d:ascribed above. On the
mixture, (i) whether or notV - v, is large enough, andii)  other hand, the shear stress gradi€nirs is usually not in
whether or not the change M- v, is properly coupled with the same orientation &-1II, since it is related to the off-
the stress. diagonal part of the deformation velocity. Thus we believe
Condition (i) is usually satisfied, since we can change thethat the shear relaxation modulus plays a dominant role in
spatial configuration of one component arbitrarily in a two-the formation of a networklike structure in the intermediate
component mixture, in general. Conditidii) is satisfied stage of viscoelastic phase separation: The overlapping of
only for a system containing a fluid as its component. Fi-stress fields having spherical symmetry around spherical sol-
nally, condition(iii ) is satisfied only when there exist attrac- vent holes induce a deformation of shear type. This initial
tive interactions between the components. In a simple fluigpherical symmetry of the stress field is characteristic of bulk
mixture, for example¥ - v, is not coupled with the elastic stress fields coupled wittV-v,. The shear deformation
stress even if there is a difference in viscosity between theauses shear stress fields through the shear relaxation modu-
two components. In relation to this problem, we consider thdus. Thus the thin part of a more viscoelastic phase can sup-
case of a mixture whose components have different glasgort the shear stress and be elongated further. In other words,
transition temperatures as an example. If only one compathe existence of a shear relaxation modulus is responsible for
nent becomes viscoelastic, the deformation of this compothe formation of a networklike pattern composed of highly

nent, which is described Wi(jk) andV v}, causes the elastic ©longated thin structurg21]. We believe that without the

stress. Thus the more viscoelastic phase becomes the matfiR€@r relaxation modulus, the networklike pattern with

phase and forms the spongelike structure, as experimentalfjreadlike structures can never be formed.
observed6]. To prevent usual spinodal decomposition from _ _ _ _ _
taking place, the bulk modulus should be sufficiently large:D- Difference in elastic effects between solid and fluid systems

The initial growth of the concentration fluctuation has to be  Here we discuss the difference in phase-separation mor-
suppressed mainly by - v,.. For example, this is realized by phology between elastically asymmetric solid mixtuf2s]
the formation of a transient interaction network. and dynamically asymmetric fluid mixtures. In the diffusion-
We believe that the bulk mechanical relaxation modulusdominated process, the system approaches the final equilib-
K(t) plays an essential role in fluctuation suppression andium state to reduce the total free energy including the elastic
volume shrinking, while the bulk osmotic moduls; does  energy[see Eq(30)]. As a result, the morphology that mini-
not play a primary role. The interactions can have any originmizes the elastic energy is selected. This is the case of solid
including entropic and energetic ones. The long-range naturmixtures having only elastic asymmetry but no dynamic
of the elastic interaction in a more viscoelastic phase is diasymmetry. In relation to this, it should be noted that the
rectly related to how efficiently the fluctuation is suppressedsolid mixture having dynamic asymmetry behaves entirely
and the volume of the relevant phase can be changed andifferently (see e.g., Ref.39)).
thus, its ability to form a spongelike structure. In the flow-dominated process, on the other hand, the
In relation to the above, it should be mentioned that theforce balance condition plays an essential role in pattern se-
strong composition dependence of the mobility has a similatection [see Eq.(23)]. As a result, the morphology itself is
effect[39], since it slows down the diffusion process in the determined by the force balance condition. The asymmetric
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stress division leads to a spongelike structure, where there would like to point out that phase inversion is also ob-
more viscoelastic phase forms a continuous networklikeserved in a recent simulation of modBl, including the
structure to support the stress. Further, the two-fluid naturetrong composition dependence of the mobil@g]. We be-
makes the volume change of phases possible. Thus we cdieve that this is the only way to introduce dynamic asym-
say that dynamic asymmetry is a prerequisite to the phasmetry into a solid model. The relation between our model
inversion, irrespective of whether material is solid or fluid. and their model and the underlying physics of their similar
behavior[21,39 will be discussed in detail elsewhere.
X. CONCLUSION
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viscoelastic model can describe phase separation or critical

phenomena in any isotropic condensed matter without any APPENDIX: COMMENTS ON APPLICATIONS
exception, if there is no coupling with additional order pa- OF VISCbELASTIC PHASE SEPARATION

rameter. _ _ _ _ IN MATERIAL SCIENCE
Although the viscoelastic model is a quite general model

of critical phenomena and phase separation, the critical be- We briefly discuss the application of the spongelike mor-
havior of this model may be intrinsically nonuniversal in the phology observed in viscoelastic phase separation. Although
sense that internal slow modes of the material can affect tha spongelike structure appears only transiently in viscoelastic
critical dynamics even near the critical point. This problemphase separation, this structure can be frozen by suitable
needs further studies to check whether the dynamic univemethods: (i) simultaneous evaporation of a solvent for a
sality practically breaks in a mixture having strong dynamicpolymer solution during phase separatidii) a further
asymmetry between its components, or [t quench of a system beloW,, and (ii) a combination of

As a straightforward extension of the stress division inother processes such as cross linking reaction. We believe
polymer mixtures[12], we also propose a simple relation that the spongelike structures reported in the literaf@Be-
describing how the stress is divided by the two components37,40,4] are induced primarily by the mechanism described
on the basis of the idea that the mechanical coupling betwedmere. In relation to this, we point out that some sponge
a component and the mean-field rheological environment iphases have periodic structurese, e.g., Refl41]), while
only due to the friction between them. We also point out thatothers do not, as in our case. This can be explained by the
the relation is not useful for a mixture whose componentsmanner of nucleation of solvent holes: only when nucleation
have different mechanisms of the molecular motion. is heterogeneously induced with a high density in a short

We also show that the characteristic features of viscoelagperiod can a periodic sponge structure be formed by the
tic phase separation can be well explained by the concept dbng-range elastic interaction between solvent hotesre-
“order-parameter switching” between composition and de-lated nucleation We also point out that polymerization-
formation tensor. induced phase separation may lead to a networklike structure

We discuss the universal features of spongelike structuresf a minority phase if there is a certain degree of dynamic
observed in various materials, and demonstrate that there isssymmetry induced by the polymerization of a component.
common physical origin that is explained by the framework In the common sense view of conventional phase separa-
of our viscoelastic model of phase separation. It is concludetion, a minority phase never forms a continuous phase, and
that the most essential physical origin of volume shrinkingforms only an isolated pha&]. However, our present study
behavior, and the resulting sponge structure, is the coexisthdicates the possibility that we can intentionally form a
ence of “asymmetry in mobility between the two compo- spongelike continuous structure of the minority phase of a
nents of a mixture” and “attractive interactions,” irrespec- more viscoelastic phase for any dynamically asymmetric
tive of whether a mixture is solid or fluid. In relation to this, mixture.
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