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Viscoelastic model of phase separation

Hajime Tanaka
Institute of Industrial Science, University of Tokyo, Minato-ku, Tokyo 106, Japan

~Received 26 November 1996; revised manuscript received 16 June 1997!

We show here a general model of phase separation in isotropic condensed matter, namely, aviscoelastic
model. We propose that the bulk mechanical relaxation modulus that has so far been ignored in previous
theories plays an important role in viscoelastic phase separation in addition to the shear relaxation modulus. In
polymer solutions, for example, attractive interactions between polymers under a poor-solvent condition likely
cause transient gel-like behavior, which makes both bulk and shear modes active. Although such attractive
interactions between molecules of the same component exist universally in the two-phase region of a mixture,
the stress arising from attractive interactions is asymmetrically divided between the components only in
dynamically asymmetric mixtures such as polymer solutions and colloidal suspensions. Thus the interaction
network between the slower components, which can store the elastic energy against its deformation through
bulk and shear moduli, is formed. This unique feature originates from the difference in mobility between two
components of a mixture. It is the bulk relaxation modulus associated with this interaction network that is
primarily responsible for the appearance of the sponge structure peculiar to viscoelastic phase separation and
the phase inversion: It suppresses short-wavelength concentration fluctuations in the initial stage, and causes
the volume shrinking of a more viscoelastic phase. We also propose a simple general law of the stress division
between the two components of a mixture, as a straightforward extension of that obtained in polymer mixtures.
We demonstrate that a viscoelastic model of phase separation including this new effect is a general model that
can describe all types of isotropic phase separation including solid and fluid models as its special cases without
any exception, if there is no coupling with additional order parameters. We show that this feature leads to a
phenomenon of ‘‘order-parameter switching’’ during viscoelastic phase separation, even if it is driven by a
single thermodynamic driving force. The physical origin of volume shrinking behavior during viscoelastic
phase separation and the universality of the resulting spongelike structure are also discussed.
@S1063-651X~97!13510-3#

PACS number~s!: 61.41.1e, 64.75.1g, 61.25.Hq, 05.70.Fh
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I. INTRODUCTION

Phase-separation phenomena are widely observed in
ous kinds of condensed matter including metals, semic
ductors, simple liquids, and complex fluids such as polym
surfactants, colloids, and biological materials. The pheno
ena play key roles in the pattern evolution of immiscib
multicomponent mixtures of any material. Thus pha
separation dynamics has been intensively studied in the
two decades from both experimental and theoretical vie
points@1#. From the concept of dynamic universality, phas
separation phenomena have been classified into various
oretical models by Hohenberg and Halperin@2#: For
example, phase separation in solids is known as the ‘‘s
model~modelB),’’ while phase separation in fluids is know
as the ‘‘fluid model~modelH)’’ @2#. For the former the loca
concentration can be changed only by material diffusion,
for the latter by both diffusion and flow. It has been esta
lished that within each group the behavior is universal, a
does not depend on the details of the material@1,2#.

In all conventional theories of critical phenomena a
phase separation, however, the same dynamics for the
components of a binary mixture, which we call ‘‘dynam
symmetry’’ between the components, has been implicitly
sumed@1,2#. However, such an assumption of dynamic sy
metry is hardly valid in various mixtures, especially in
material group of ‘‘complex fluids.’’ Recently we found tha
in mixtures having intrinsic ‘‘dynamic asymmetry’’ betwee
561063-651X/97/56~4!/4451~12!/$10.00
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its components~e.g., polymer solutions composed of lon
chainlike molecules and simple liquid molecules!, a critical
concentration fluctuation is not necessarily only the sl
mode of the system and, thus, we have to consider the in
play between critical dynamics and the slow dynamics of
material itself@3–6#. In addition to solid and fluid models
thus, we need a third general model for phase separatio
condensed matter, which we call a ‘‘viscoelastic mode
@5,6#.

To describe the difference in the elementary dynam
between the two components of a mixture, we need a b
model that can treat the motion of each component se
rately: such a model is known as a ‘‘two-fluid model.’’ Th
basic dynamic equations of the viscoelastic model have b
derived to understand the coupling between the stress
diffusion @7–9# and also the unusual shear effects in polym
solutions@9–14#, which are known as ‘‘Reynolds effects,
on the basis of a two-fluid model@7,15,16#.

In this paper, we propose that we need some esse
modification to the ‘‘viscoelastic model’’ of phase separati
described above: We believe@17# that the bulk relaxation
modulus, which has been neglected~or, more strictly, not
treated as an important physical factor! in previous theories
@12,13#, plays as important a role in viscoelastic phase se
ration as in gel phase separation. This modified viscoela
model can describe any kind of phase separation in mixtu
of isotropic condensed matter without any exception, if th
is no coupling with an additional order parameter. In Sec.
4451 © 1997 The American Physical Society
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we review the theoretical derivation of a viscoelastic mo
based on a two-fluid model. In Sec. III, we discuss the int
nal modes of the material itself, and the resulting stress
how the stress is partitioned between the two component
Sec. IV, we describe the basic equations of a viscoela
model. In Sec. V, we discuss the origins of asymmetric str
division, using a few examples. We also propose a gen
rule of stress division that is independent of the material
Sec. VI, we discuss the generality of a viscoelastic mod
and demonstrate that all the models of phase separatio
isotropic condensed matter are special cases of a viscoe
model. In Sec. VII, we discuss the viscoelastic suppress
of local concentration fluctuations in polymer solutions, f
cusing on the roles of a bulk relaxation modulus. In S
VIII, we demonstrate that characteristic features of viscoe
tic phase separation can be explained by a simple conce
‘‘order-parameter switching,’’ which originates from th
general nature of the viscoelastic model. In Sec. IX, we d
cuss the universal nature of spongelike morphology cha
teristic of a dynamically asymmetric mixture containing
fluid as its component. In Sec. X, we conclude our work.
the Appendix, we briefly mention the applications of vi
coelastic phase separation to material science.

II. VISCOELASTIC MODEL BASED
ON A TWO-FLUID MODEL

Here we review how a viscoelastic model can be deriv
on the basis of the two-fluid model@11–13# ~see Ref.@12#
for the details of the theoretical method!. The model was
originally derived to describe phase separation in polym
@12,13#, but we believe that the viscoelastic model shou
describe phase separation in any dynamically asymme
mixture, irrespective of the microscopic details of a syst
@5,6#. Thus here we focus special attention on how the m
general version of the viscoelastic model can be derived.
us consider a two-fluid model of a mixture of component
and 2. LetvW 1(rW,t) and vW 2(rW,t) be the average velocities o
components 1 and 2, respectively, andf(rW,t) be the volume
fraction of the component 1 at pointrW and timet. Here we
assume for simplicity that the two components have the s
densityr. Then the conservation law gives

]f

]t
52¹W •~fvW 1!5¹W •@~12f!vW 2#. ~1!

The volume average velocityv is given by

vW 5fvW 11~12f!vW 2 . ~2!

The free energy of the systemFmix is given by

Fmix5E drWF f „f~rW !…1
C

2
„¹f~rW !…2G , ~3!

where f (f) is the free energy per unit volume of a mixtu
with the concentrationf of component 1. The form off (f)
depends upon the system; for example, it is given by
Flory-Huggins free energy@18# for polymer mixtures. Its
time derivative can be written as
l
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Ḟmix5E F ] f

]f
2C¹2fG ḟdrW

52E F ] f

]f
2C¹2f G@¹W •~fvW 1!#drW

5E ~¹W •P!•vW 1drW, ~4!

where¹W •P5f¹@(] f /]f)2C¹2f# and P is the osmotic
tensor. We also assume here that the forcesFW i acts on the
componenti . Thus the Rayleighian to be minimized is

R5E drWF 1
2 r

]

]t
vW 21 1

2 z~f!~vW 12vW 2!21~¹W •P!•vW 12p¹W •vW

2v1
W

•FW 12vW 2•FW 2G . ~5!

In the above, the term containing the pressurep is added to
guarantee the incompressibility condition

¹W •vW 50. ~6!

The condition that the functional derivatives of the Ra
leighian with respect tovW 1 andvW 2 be zero gives the follow-
ing equations of motion:

r
]~fvW 1!

]t
52¹W •P2z~vW 12vW 2!1f¹p1FW 1 , ~7!

r
]@~12f!vW 2#

]t
5z~vW 12vW 2!1~12f!¹p1FW 2 . ~8!

Thus the average velocityvW obeys

r
]vW

]t
52¹W •P1¹p1FW 11FW 2. ~9!

In the quasistationary condition, the velocity difference b
tween the two components, on the other hand, obeys

vW 12vW 252
1

z
@~12f!¹W •P2~12f!FW 11fFW 2#. ~10!

III. COUPLING OF INTERNAL MODES OF MATERIAL
WITH DEFORMATION AND THE DIVISION

OF THE RESULTING STRESS

A. Origins of stress

To obtain the form of the forcesFW i explicitly, we need to
understand how the stress is partitioned between the
components, and also to have the microscopic expressio
the stress tensor of the material. The macroscopic total fo
FW should be related toFW 1 andFW 2 as

FW 5¹W •s5FW 11FW 2. ~11!

Heres is the total stress tensor, which is, in general, giv
by the constitutive equation of material. In a linear-respon
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regime, the most general expression ofs i j is formally writ-
ten by introducing the time dependence of bulk and sh
moduli in the theory of elasticity@19# as

s i j 5E
2`

t

dt8$G~ t2t8!k r
i j ~ t8!1K~ t2t8!@¹W •vW r~ t8!#d i j %,

~12!

where

k r
i j 5

]v r
j

]xi
1

]v r
i

]xj
2

2

d
~¹W •vW r !d i j . ~13!

HerevW r is the velocity relevant to the rheological deform
tion, andd is the spatial dimensionality.G(t) andK(t) are
material functions, which we call the shear and bulk rela
ation modulus, respectively. Here it should be noted t
K(t) does not contain the bulk osmotic modulu
Kos5f2(]2f /]f2). We have the relationh5*0

`G(t)dt,
whereh is the viscosity of the material.

The second term of Eq. (12) is newly introduced to inc
porate the effect of volume change into the stress ten
@20,21#. In a two-component mixture, the mode associa
with ¹W •vW r can exist as far asvW rÞvW , even if the system is
incompressible. It should be stressed that its diagonal na
leads to the direct coupling with diffusion: note that t
effective osmotic pressure is given by peff

5@f(] f /]f)2 f #2*2`
t dt8K(t2t8)¹W •vW r(t8). We believe,

thus, that this term is important even in the case of polym
solution, as described below, although this term has so
been ignored~or, more strictly, not treated as an importa
physical factor! in the previous theories@11–14#.

B. Estimation of the stress division parameterak

Here we consider the physical meaning ofvW r . In a linear-
response regime, the rheological velocityvW r is generally
given by the linear combination ofvW 1 andvW 2 @12,14#:

vW r5a1vW 11a2vW 2 . ~14!

Then the next problem is how the stress is partitioned
tween the two components. SinceFW •vW r should be equal to
FW 1•vW 11FW 2•vW 2 in the Rayleighian, we have the followin
stress division:

FW 15a1FW , FW 25a2FW . ~15!

Herea11a251 from Eq.~11!.

C. Direct estimation of F¢ k

Here we consider the meaning of the forces from a diff
ent viewpoint. The forces acting on the componentk are ~i!
the friction between the componentk and the other compo
nent due to their relative motion, and~ii ! the rheological
coupling between the componentk and the surrounding
rheological environment including the componentk itself.
This can be easily understood by considering a gel tha
composed of a polymer network and a solvent, as an
ample: The motion of polymer is affected by the two force
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namely, the friction force against the solvent and the ela
force due to the network deformation. Thusit is natural to

think that FW k (k51,2) corresponds to the force of type (ii)
namely, the force acting on the component k by the motio

the component k(vW k) itself, and not by that of the othe
component. Thus we assume thatFW k is linear invW k :

FW k5¹W •s~k!, ~16!

s i j
~k!5E

2`

t

dt8$G~k!~ t2t8!kk
i j ~ t8!

1K ~k!~ t2t8!@¹W •vW k~ t8!#d i j %, ~17!

where

kk
i j 5

]vk
j

]xi
1

]vk
i

]xj
2

2

d
~¹W •vW k!d i j . ~18!

Here the unknown factors become the functional shape
G(k)(t) and K (k)(t) for the motion of the componentk, in-
stead ofak .

Using the stress division parametersak , we obtain the
following relations betweenG andG(k) and also betweenK
andK (k):

G5
G~1!G~2!

a2
2G~1!1a1

2G~2!
, ~19!

K5
K ~1!K ~2!

a2
2K ~1!1a1

2K ~2!
. ~20!

These functionsG(k) andK (k) express the rheological prop
erties of the material responding to the velocityvW k . The fact
that vW 1 and vW 2 are coupled with each other makes the es
mation of the rheological functions difficult.

D. ak or F¢ k

The estimation of the stress division ofFW into FW 1 andFW 2,
which is given by the stress division parameterak , formally
looks simpler than the direct estimation of the above rh
logical functions,G(k) and K (k); this is true for a nearly
symmetric stress division, as in the case of a polymer m
tures: More strictly speaking, when the dynamics of bo
components is governed by the same mechanism,ak is use-
ful to estimate the stress division.

However, the physical meaning of the latter is clearer th
the former in a case of a strongly asymmetric stress divis
In polymer solutions, for example, the mechanism of po
mer dynamics is essentially different from that of solve
dynamics; and, thus, the rheological functionsG(k) andK (k)

are more useful thanak ~see Sec. V!.

IV. BASIC EQUATIONS OF A VISCOELASTIC MODEL

Here we summarize the basic equations describing a
coelastic model:
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]f

]t
52¹W •~fvW !2¹W •@f~12f!~vW 12vW 2!#, ~21!

vW 12vW 252
12f

z F¹W •P2¹W •s~1!1
f

12f
¹W •s~2!G ,

~22!

r
]v
]t

>2¹W •P1¹p1¹W •s~1!1¹W •s~2!. ~23!

We also need Eqs.~2!, ~6!, and~17!, and the information on
the stress division. Here it should be noted that we n
phenomenological or microscopic theories describing
forms ofG(t) andK(t), or those ofG(k) andK (k). Since we
derive the above basic equations, relying only upon a tw
fluid model,they should be independent of types of mate
and quite general.

V. ASYMMETRIC STRESS DIVISION

Here we focus on some specific problems to gain dee
insight into the origins of stress, and how the resulting str
is partitioned between the two components of a mixtu
Then we consider some general features of asymmetric s
division.

A. Examples of asymmetric stress division

1. Polymer solutions: cases of good andu solvents

In this case, the stress division has already been give
the literature@11–14#: a1>1 anda2>0, provided that the
component 1 is a polymer and 2 is a solvent. However,
division itself is based indirectly on the estimation ofG(k),
since the stress division parameters cannot be determ
precisely. It should be stressed that there is no direct wa
determinea1 anda2 from the first principle. Thus there is n
firm basis forvW r5vW 1 in a polymer solution, as pointed out b
Doi and Onuki@12#, although it appears physically natura
In this case, we believe that Eq.~17! is more useful and
physically easier to understand than Eq.~12!, as described in
Sec. III D.

The topological entanglement can be ‘‘felt’’ only by poly
mers, and never by solvent molecules. ThenG(1)(t) is ap-
proximately given by the existing polymer-solution theo
@22# @G(1)(t)>G(t)# andK (1)(t);0 @11–13#, if the solvent
is not poor. On the other hand,G(2)(t) is an extremely fast
decay function and, thus, the solvent viscosityh2 is obtained
ash25*0

`dtG(2)(t). Since the solvent has no large intern
degrees of freedom, we can safely assume thatK (2)50.

2. Polymer solutions: a case of a poor solvent

It should be stressed that the phase separation of a p
mer solution always occurs in a poor solvent, and, thus,
case of a poor solvent is extremely important when we c
sider critical phenomena and phase-separation phenom
Unfortunately, however, there do not exist any establis
theories that describe quantitatively the polymer dynamic
a poor solvent. In a poor solvent, we need to consider
attractive interactions between polymer chains seriou
Thus the most natural model is a transient gel model@20,21#
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in which the interpolymer attractive interaction produces
temporal contact point~cross linking! between polymer
chains. If we assume that the lifetime of the temporal cont
between chains istx , we expect that the bulk relaxationa
modulusK (1)(t) has a relaxation time of the order oftx . tx

likely obeys the Arrhenius-type law:tx5tx
0exp(E/kBT) (kB

is the the Bolzmann constant!. Here the bonding energyE is
likely proportional toTu2T (Tu is theu temperature! near
Tu , and also dependent upon the distance and orientatio
the relevant segments. Even in polymer solutions, thus,
expect thatK (1)(t) plays an important role in viscoelasti
phase separation, in contrast to the previous theories@11–
14#: The transient network of topological origin itself (en
tanglement effects) might not lead to the bulk relaxat
mode, while the transient network formed by attractive int
actions does clearly make the bulk relaxation mode act
We believe that it is this mode that is primarily responsib
for the volume shrinking behavior of a more viscoelas
phase observed in our experiments@5,6#. The characteristic
decay time ofG(1)(t) is likely longer thantx , since repta-
tionlike motion is additionally required for the polymer mo
tion under the temporal network formed by the attract
interaction. We need further theoretical studies to find qu
titative expressions ofG(t) andK(t) in a poor solvent.

Relating to the above transient gel model, we specu
that a polymer solution behaves as a physical geluniversally
at least at a high polymer concentration under a stron
poor-solvent condition. The existence of special juncti
points is not a prerequisite for the formation of such a tra
sient gel. The transient pairing of any parts of two chains c
be regarded by a temporal cross linking. Any pair of se
ments of polymer chains can form a temporal cross link
point, irrespective of interchain or intrachain interaction. T
probability of its formation is determined by the balance b
tween the intersegment attractive interaction depending u
the geometrical configuration of chains and the thermal
ergy. Thus the most probable candidate for the contact p
is an entanglement point. The sol-gel transition can be gi
simply by the criterion that the transient network formed
interpolymer attractive interaction is percolated at any m
ment. A polymer chain having at least two contact poin
with other different polymers plays the role of a junctio
point of a usual physical gel. If we assume simply that t
topological entanglement point is the only candidate fo
temporal cross linking point, the criterion for physical gel
tion is given by

N

Ne
exp~E/kBT!>2, ~24!

whereN is the degree of polymerization of the polymer, a
Ne is the degree of polymerization between entanglem
points. Further quantitative studies along the above line
highly desirable.

3. Polymer mixtures

In the case of a mixture of polymers 1 and 2, who
degrees of polymerization areN1 and N2, respectively, the
stress produced by the motion of polymer 1 can be differ
from that produced by the motion of polymer 2. Intuitivel
the motion of a longer chain causes stronger stress than
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of a shorter chain does. Following the Brochard theory
mutual polymer diffusion@23#, which is based on a reptatio
theory that mainly deals with the effect of topological co
straints~tube! on entangled polymer chains, Doi and Onu
@12# explained how the stress should be divided by the t
polymers with different lengths. According to them,

vW r5vW T5a1vW 11a2vW 2 , ~25!

ak5
zk

z11z2
5

fNk

fN11~12f!N2
, ~26!

wherevW T is the tube velocity. Herezk is the friction of the
componentk with the tube surrounding it.zk is given by
zk5fk(Nkz0 /Ne) @12#, wherefk is the volume fraction of
the componentk, z0 is the microscopic friction constant, an
Ne is the average degree of polymerization between the
tanglement points. The resulting stress division is given
FW k5ak¹W •s @12#. Here it should be stressed thatzk is the
very essential quantity in the sense that it represents
coupling strength between the component k (the volume f
tion of fk) and the surrounding rheological environment.

Near and below a critical pointTc , however, we also
have to consider the role of the attractive interactions
tween the same kind of polymers, which increases the rh
logical coupling, namely,zk . For example, this leads to
slower diffusion constant than that predicted by a reptat
theory which concerns only topological effects and negle
energetic interactions between polymers. The inclusion
energetic interactions is a prerequisite to a more precise
scription of polymer dynamics. However, the following fa
should be mentioned: High-molecular weight polymer m
tures often mix at a lower temperature, and demix at a hig
temperature. In such a case, energetic interactions likely
more important roles in polymer dynamics in the one-ph
region rather than in the demixing region.

4. A mixture of components having very different
glass-transition temperatures„Tg…

In this case, we also expect an asymmetric stress divis
since the two kinds of component molecules are expecte
‘‘feel’’ very differently the rheological environment as in th
case of polymer mixtures, even if the mean-field rheologi
environment surrounding them is the same. We have actu
observed viscoelastic phase separation in a mixture of p
mers having very differentTg’s, whose behavior is essen
tially the same as that of polymer solutions@6#. It is easy to
imagine that a high-Tg component has less friction with th
local rheological environment than a low-Tg component. Re-
cent theoretical studies on supercooled binary liquids@24#,
based on the mode-coupling approximation, support suc
picture. If we formally introduce the coupling strengthzk for
the componentk that is proportional tofk , the stress divi-
sion can be expressed by the same relation as in the a
case of polymer mixtures. The mean-field rheological en
ronment in this problem of a glass transition is the so-ca
‘‘cage’’ @25#. The concept of a ‘‘cage’’ in the glass trans
tion is quite similar to the concept of a ‘‘tube’’ in polyme
mixtures.The escape time of a molecule from a ‘‘cage’’
‘‘tube’’ gives a relaxation time ofG(t) in both cases. Unfor-
n
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tunately, we do not have a reliable theoretical basis even
a simple liquid-glass transition, and, thus, it is difficult
find specific quantitative expressions forzk at present.
Phenomenologically, however, it is known thatG(t)
5G0exp@2(t/t)b# and t;t0exp@B/(T2T0)#, whereb is the
stretching parameter (0<b<1) and T0 is the so-called
Vogel-Fulcher temperature. It should be stressed again
we have to take into account the effects of attractive inter
tions between the same species on their dynamics belowTc
@26#.

5. Colloidal suspensions

It is well known that the addition of enough of nonabsor
ing polymer to an otherwise stable colloidal suspension
induce phase separationvia the depletion mechanism. Co
loidal suspensions form a transient gel state in the ini
stage of phase separation@27# in much the same way a
polymer solutions do. We believe that the essential featu
of colloid phase separation can also be well described by
viscoelastic model. The dynamic asymmetry in colloidal s
pensions simply comes from the size difference between
loids and solvent molecules.

B. Physical origin of asymmetric stress division

Here we consider the problem of what is the most ba
physical factor that is responsible for asymmetric stress
vision, on the basis of intermolecular or interparticle intera
tions. The network of attractive interaction is universa
formed when a mixture is quenched into its metastable
unstable state, since there exist attractive interactions
tween the same components. In dynamically symmetric m
tures, the interaction network always relaxes in its equil
rium state much faster than the phase-separation proces
dynamically asymmetric mixtures, however, the relaxat
time of the interaction network is different between the tw
components because of the mobility difference. This cons
eration, based on microscopic interactions, leads to the c
clusion thatthe dynamic asymmetry between the compone
of a mixture is the essential origin of asymmetric stress
vision. Thus the phase-separation behavior of any dyna
cally asymmetric mixtures including the above@Secs.
V A 1–V A 5# should be essentially the same and describ
by Eqs.~21!–~23!.

C. A general rule of stress division

On the basis of the above examples, we discuss a gen
rule of the stress division in viscoelastic matter. Here we
not consider elastic matter where the elastic coupling pl
an important role in addition to the friction. In the precedin
discussion, we obtained the general relation given by@Eq.
~14!#, vW r5a1vW 11a2vW 2, with a11a251. For the relative
motion of the componentk having a velocity ofvk, to the
mean-field rheological environment having a velocity ofvW r ,
the friction force is given byzk(vW r2vW k), where zk is the
average friction of the componentk and the mean-field rheo
logical environment at pointrW, where the volume fraction o
k component isfk(rW). Here zk5fkzk

m and zk
m is propor-

tional to the friction between an individual molecule of th
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componentk and the mean-field rheological environmen
which we call the generalized friction parameter. Because
the physical definition of the mean-field rheological enviro
ment, the two friction forces should be balanced. This f
guarantees that the rheological properties can be desc
only by vW r as in Eq.~12!. Thus we have the following rela
tion, in general:

z1~vW r2vW 1!1z2~vW r2vW 2!50. ~27!

From Eqs.~14! and~27!, we obtain the general expression
the stress division parameterak :

ak5
fkzk

m

f1z1
m1f2z2

m
. ~28!

The above relation is consistent with a simple physical p
ture in which the friction is only the origin of the couplin
between the motion of the component molecules and
rheological medium. The above relation is a straightforw
extension of the stress division in polymer mixtures@12#,
wherevW r is the tube velocityvW T . We expect that this relation
holds, irrespective of the microscopic details of rheologi
models, and, thus, we can apply it to a mixture of any m
terial, the motion of both of whose components is describ
by a common mechanism. However, it should be stres
that this relation is not useful for mixtures whose compone
have essentially different mechanisms of molecular mo
as in the case of polymer solutions: In polymer solutions, for
example, the motion of polymers is essentially different fro
that of solvent molecules in the mechanism. In the stand
rheological theory of polymer solutions,G(t) itself is esti-
mated as the sum of the polymer contribution and the solv
contribution. Thus the stress division cannot be simply
scribed by Eq.~28!. In such cases, Eq.~17! is more useful, as
mentioned in Sec. III D.

VI. GENERALITY OF A VISCOELASTIC MODEL

Next we briefly discuss the generality of the above v
coelastic model described by Eqs.~21!, ~22!, and~23! @20#.
This model including the bulk volume relaxation mode
quite a general model, as shown below. We describe be
how the viscoelastic model reduces to various models un
some assumptions.

A. Elastic solid model

If we assume thatG(t)5m(f) (m is the shear modulus!

and K(t)5Kb(f) (Kb is the bulk modulus! and vW 50, this
model reduces to the model of an elastic solid model@28#.
Since the time integration of the velocity becomes the de
mationu, the stress is given by

s i j 5m~f!F]uj

]xi
1

]ui

]xj
2

2

d
~¹W •uW !d i j G1Kb~f!~¹W •uW !d i j .

~29!

Thus the basic kinetic equation is given by
,
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]f

]t
5¹W •

f~12f!2

z F¹W •P2¹W •s~1!1
f

12f
¹W •s~2!G .

~30!

In this case, the softer phase forms a networklike phase
cause the deformation of the softer phase costs less en
than that of the harder phase@28#. It should be stressed tha
the force balance condition plays no roles in determining
morphology. This fact causes the striking difference in m
phology between an elastic solid model and an elastic ge
asymmetric viscoelastic model@5#: In the former the softer
phase forms the networklike structure, while in the latter
harder phase does.

B. Solid model

If we assume dynamic symmetry~no dependence ofm
and Kb on f) further, it reduces the solid model~model B
@2#!. This is because we have a symmetric stress division
(12f)FW 15fFW 2. Here it should be noted that the conditio
m5Kb50 is unnecessary, and only symmetry in elas
properties between the two components is required. In
case, the basic equation becomes the simplest diffusion e
tion

]f

]t
5¹W •

f~12f!2

z
@¹W •P#. ~31!

C. Symmetric viscoelastic model

If we assume only dynamic symmetry between the t
components of a mixture, it reduces to a new ‘‘symmet
viscoelastic model.’’ In this case, we have a trivial stre
division FW 15f¹W •s and FW 25(12f)¹W •s. That is,a15f
and a2512f. The rheological functionsG(k) can be esti-
mated asG(1)(t)5fG(t) andG(2)(t)5(12f)G(t). In this
particular case,vW r5vW , and, accordingly, there should be n
contribution of the bulk relaxation modulus under the inco
pressibility condition (¹W •vW 50). The basic kinetic equation
are given by

]f

]t
52¹W •~fvW !1¹W •

f~12f!2

z
¹W •P, ~32!

r
]v
]t

>2¹W •P1¹p1¹W •s. ~33!

SincevW r5vW , the gross variables describing the dynamics
only f andvW . Here it should be stressed that the rheologi
function G(t) does not depend upon the locationrW because
of the dynamic symmetry. Using the relation¹W •vW 50, thus,

FW 5¹•s5E
2`

t

dt8G~ t2t8!¹2vW ~ t8!. ~34!

We also have the relation

vW 12vW 252
12f

z
@¹W •P#, ~35!
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56 4457VISCOELASTIC MODEL OF PHASE SEPARATION
although it is unnecessary for solving the problem.
This model describes the dynamics of dynamically sy

metric polymer mixtures. It should be stressed that t
model is different from the fluid model~modelH) described
below. Thus there remains a possibility that there is a n
polymer effect relating to this model: For example, we e
pect an unusual feature in the initial stage of phase separa
where the deformation rate is large. The polymer effect c
responding to this was first pointed out by de Gennes@29#,
and was very recently studied in detail by Kumaran and F
derickson@30#.

D. Fluid model

If we assume that the deformation is much slower than
internal rheological time of the material for the above mod
we further have the relation¹W •s5h¹2vW . Thus the model
reduces to the fluid model~modelH @2#!

]f

]t
52¹W •~fvW !1¹W •

f~12f!2

z
¹W •P, ~36!

r
]v
]t

>2¹W •P1¹p1h¹2vW . ~37!

E. Elastic gel model

If we assume onlyG5m(f) andK5Kb(f), it reduces to
the elastic gel model@31,32# that describes phase separati
in elastic gel. The basic equations are essentially the sam
those of viscoelastic phase separation in a polymer solu
@Eqs. ~21!, ~22!, and ~23!#, except that the stress tensor
given by

s i j
~1!5m~f!F]u1

j

]xi
1

]u1
i

]xj
2

2

d
~¹W •uW 1!d i j G1Kb~f!~¹W •uW 1!d i j ,

s i j
~2!5h2F]v2

j

]xi
1

]v2
i

]xj
2

2

d
~¹W •vW 2!d i j G .

In this case, when the elastic energy overcomes the mix
free energy, phase separation stops and the coarsenin
domains is pinned.

F. Generality and intrinsic nonuniversality

Since any phase separation in all isotropic condensed
ter can be classified into solid, elastic solid, elastic gel, sy
metric and asymmetric viscoelastic, and fluid models,
above viscoelastic model~see Sec. IV!, including both shear
and bulk relaxation stresses, should be a universal m
describing phase separation and critical phenomena in iso
pic matter without any exception.

However, this model is not universal in the usual sense
critical phenomena, since it requires some microscopic th
ries describing the rheological properties of the matter. In
extreme limit of strong dynamic asymmetry, the element
slow dynamics~internal mode! of material affects the critica
fluctuation even near the critical point, in contrast to t
concept of the dynamic universality@2#. Thus there is a pos
sibility that we cannot experimentally approach a critical
-
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gime where the order parameter dynamics is only the s
mode in the system@4,5#.

Viscoelastic effects can be parameterized by the so-ca
viscoelastic lengthjve;(Djt t)

1/2 originally introduced by
Brochard and de Gennes@7#, wheret t is the characteristic
time of rheological relaxation andDj is the diffusion con-
stant. For length scales longer thanjve, concentration fluc-
tuations decay by diffusion, while for length scales shor
than jvc , viscoelastic effects dominate@7,12,13#. This is a
simple mapping of the dynamic crossover in which, on
time scale longer thant t , diffusion dominates concentratio
fluctuations, while on a time scale shorter thant t viscoelastic
effects dominate. The critical regime is, thus, described
the conditionj@jve, where j is the correlation length of
concentration fluctuations. This condition can also be writ
astj@t t , wheretj is the characteristic time of the critica
concentration fluctuations. Thus we need to consider whe
we can easily approach the critical regime that is defined
the above criterion, in a viscoelastic system. A more deta
consideration of this problem ofintrinsic nonuniversality
will be described elsewhere.

VII. VISCOELASTIC SUPPRESSION OF LOCAL
CONCENTRATION FLUCTUATIONS

IN POLYMER SOLUTIONS

A. Fluctuation suppression due to bulk relaxation modulus

According to the continuity equation, Eq.~1!, we have the
relation

]f

]t
52¹f•vW 12f¹W •vW 1 . ~38!

Here we assume that component 1 is a polymer and
component 2 is a solvent. In the above equation, the
term on the right-hand side simply describes the translatio
transport of polymers to a pointrW by the locally uniform
velocity field vW 1, while the second one describes polym
diffusion toward or from a pointrW. Thus the first term is
associated only with the change in the spatial pattern of
concentration distribution, while the second term is resp
sible for the change in the concentration distribution itself.
the initial stage of phase separation, the major process is
diffusion process leading to the change in the concentra
distribution itself, and there are few changes in the spa
pattern of the concentration distribution. Neglecting the fi
term in Eq.~38!, thus, we have the relation

]f

]t
/f>2¹W •vW 1 . ~39!

The left-hand side of the above equation is inversely prop
tional to the characteristic time of the concentration chan
tf . On the other hand, the bulk relaxation modulusK(t),
that is directly coupled with¹W •vW 1, has a characteristic deca
time of tx , which is related to the characteristic time of th
transient crosslinking between polymer chains in a po
solvent condition. Iftx@tf , the rapid growth of concentra
tion fluctuations characteristic of spinodal decomposition
suppressed severely and may even be prohibited. Iftx!tf ,
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4458 56HAJIME TANAKA
on the other hand, there are few elastic effects, and the
centration fluctuations can grow as in typical spinodal
composition.

B. Spinodal decomposition vs nucleation and growth

If the above mechanism of the suppression of concen
tion fluctuations works efficiently, spinodal decompositi
cannot proceed further after the crossover betweentx and
tf . Thus the type of phase separation switches from s
odal decomposition to nucleation and growth. More stric
speaking, the concentration fluctuations grow only locally
the solvent-rich region wheretx is short and diffusion takes
place easily. Such behavior is actually observed in our
periments@5#. The crossover from an initial fluid state to
transient gel state likely takes place almost immediately a
the temperature quench, since the long-range diffusion
motion of molecules is not required for the formation of
transient network~see also Sec. VIII C.!. After the formation
of a transient gel state, the ‘‘mechanical instability’’ that is
universal feature of the ‘‘soft’’ network of attractive intera
tions leads to nucleation-growth-like behavior. In the follo
ing, we discuss the concept of ‘‘order-parameter switchin
resulting from the crossover between the characteri
phase-separation time and the internal rheological time.

VIII. ORDER-PARAMETER SWITCHING

A. Order-parameter switching between composition
and deformation tensor

Here we consider the dynamic process of viscoela
phase separation on the basis of the viscoelastic relaxa
phenomena described by Eq.~12!. The quantitative feature
of the dynamics can be understood on the basis of a con
of ‘‘order-parameter switching’’@20#. Phase separation i
usually driven by a thermodynamic force, and the result
ordering process can be described by the temporal evolu
of the relevant order parameter associated with the ther
dynamic driving force. The primary order parameter desc
ing phase separation of a binary mixture is a composit
difference between the two phases. Besides exceptional c
where phase separation and other ordering processes su
superfluidization, gelation, liquid-crystallization, and cryst
lization, simultaneously proceed@1# @in other words, there
are more than two kinds of thermodynamic forces~order
parameters!#, a phase-separation process is usually charac
ized by a single order parameter. In the viscoelastic mo
on the other hand, the phase-separation mode can
switched between a ‘‘fluid mode’’ and an ‘‘elastic g
mode.’’ This switching is likely caused by a change in t
coupling between stress fields and velocity fields, which
described by Eq.~12!: Equation ~12! tells us that these
two ultimate cases, namely,~i! the fluid model

@k i j
p ,¹W •vW r;const# and ~ii ! the elastic gel mode

@G(t),K(t);const#, correspond tot ts@td and t ts!td , re-
spectively. Heretd is the characteristic time of deformation
and t ts is the characteristic rheological time of the slow
phase. There can be two types oft ts : One is associated with
the characteristic decay time ofG(t), and the other with tha
of K(t). We think that the former is generally longer than t
latter in polymer solutions, as mentioned in Sec. V A 2.
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described in Sec. VII, we believe that the latter plays
important role in the suppression of concentration fluct
tions in the initial stage.

For td@t ts the primary order parameter is the compo
tion in usual classical fluids, while fortd<t ts it is the de-
formation tensor (di j 5]uj /]xi1]ui /]xj ) as in elastic gels.
In the elastic regime, the force terms can be included in
Hamiltonian as in the case of gel. Then the free-energy fu
tional is formally written only by the deformation tensordi j
as f (di j ). Thus, we can say that the order-parameter swit
ing is a result of the competition between two time sca
characterizing domain deformationtd and the rheological
properties of domainst ts . This is a kind ofviscoelastic re-
laxation in pattern evolution.

B. How does order-parameter switching occur?

We next consider howt ts andtd change with time during
phase separation. In the initial stage, the velocity fields gr
as v;(kBTK/3hj)Df2, whereDf is the composition dif-
ference between the two phases andj is the correlation
length, or the interface thickness. SinceDf approaches 2fe
(fe is the equilibrium composition! with time, this expres-
sion of v reduces to the well-known relationv;g/h (g is
the interface tension! in the late stage @note that
g;kBTK(2fe)

2/3j#. Thus the characteristic deformatio
time td changes with time astd;R(t)/v(t);R(t)/Df(t)2.
In the initial stage, the domain size does not grow so mu
with time, while Df rapidly increases with time, and, ac
cordingly, td decreases rapidly. On the other hand,t ts in-
creases steeply with an increase inDf, reflecting the in-
crease in the polymer concentration in a polymer-r
domain. Thust ts becomes comparable totd in the interme-
diate stage of phase separation. Oncetd,t ts , the slower
phase cannot follow the deformation speed and behave
an elastic body: The elastic energy dominates the coarse
process in the intermediate stage. Next we consider the
stage. SinceDf approaches 2fe and becomes almost con
stant in the late stage,td (;Rh/g) increases with an in-
crease inR, while t ts becomes almost constant. Thustd
again becomes longer thant ts . In short,td@t ts in the initial
stage,td<t ts in the intermediate stage, andtd@t ts in the
late stage again. Accordingly, the order parameter switc
from the composition to the deformation tensor, and th
switches back to the composition again. This is the first c
of ‘‘order-parameter switching’’ during an ordering proce
driven by a single thermodynamic driving force, to o
knowledge.

C. Further consideration on G„t… and K„t…: Kinetics
of transient gel formation

Here we briefly consider the viscoelastic functionsG(t)
and K(t), which are dependent upon the material. In t
above discussion,t ts is assumed to be a function ofDf.
However, this picture is not necessary true. In polymer so
tions and colloidal suspensions, for example, the trans
gel-like structure is likely formed very quickly after th
quench. This is because the diffusion of polymers or coll
dal particles over a large length scale is not required to fo
the interaction network. The diffusion length scalel is of the
order of polymer or particle sizea near the critical compo-
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56 4459VISCOELASTIC MODEL OF PHASE SEPARATION
sition (fc); thus the time required to form a network
;a2/Da , whereDa is the diffusion constant of a polymer o
particle. In such a case,t ts very rapidly increases to the orde
of tx, within a time of;a2/Da after the quench. In such
case, the first order-parameter switching from composition
deformation tensor occurs within a very short peri
(;a2/Da) after the quench: The system enters into an ela
regime just after the quench.

The diffusion length scalel increases with a decrease
polymer or colloid concentrationf. If a percolated network
cannot be formed within a sufficiently short time, a quasih
mogeneous transient gel state is not realized due to p
separation, and, thus, a networklike phase-separated pa
is not formed; instead, a droplet pattern is formed@5#. This
criterion may cause the threshold composition between d
let and network phase separation.

Finally, it should be stressed that to describe this netw
formation process and the resulting change in viscoela
functions,G(t) and K(t), we need a microscopic model o
each system.

D. Volume shrinking behavior: Absence of self-similar
pattern growth in viscoelastic phase separation

Because of the order-parameter switching, there is
self-similarity in the pattern evolution of viscoelastic pha
separation. In the elastic regime, further, the volume ra
between the two phases changes with time@5,6,20#, and,
thus, there is no proportionality between interdomain d
tance and domain size. This behavior even leads to ph
inversion when the more viscoelastic phase is a slightly
nority phase in equilibrium: in the initial stage a less v
coelastic phase forms droplets, while in the final stag
more viscoelastic phase does. This means that there a
least two length scales that change differently with tim
This is also related to the absence of any characteristic le
scale in elastic deformation.

Here we make a rough estimate of volume shrinking
netics. The elastic regime should be analogous to the vol
shrinking of gel. The characteristic shrinking timetshrink is
likely dependent upon the characteristic length scaleL as
L2/D (D is the gel diffusion constant@8#!. It should be noted
that only the length scale in this problem is the length sc
associated with the ‘‘mechanical instability,’’ that is, th
characteristic distance between solvent holes,Lhole. Neglect-
ing the time dependence ofLhole, we obtain a very rough
estimation of the volume shrinking time astshrink;Lhole

2 /D,
which can be a very long time. The estimation ofLhole,
including its time dependence, requires a stability analy
under the influence of phase separation. We need fur
study on this problem.

E. Pattern selection: elastic energy vs interface energy

Since the deformation tensor intrinsically has a geome
cal nature, the pattern in the elastic regime is essenti
different from that of usual phase separation in fluid m
tures. The domain shape during viscoelastic phase separ
is determined by whether the elastic or interface energ
more dominant. Roughly, the elastic energy is estimated
me2Rd (e is the strain andd is the spatial dimensions! for a
domain of sizeR, since it is the bulk energy. On the oth
to
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hand, the interface energy is estimated asgRd21. For mac-
roscopic domains, thus, the elastic energy is much more
portant than the interface energy in the intermediate st
wheretd<t ts . Accordingly, the domain shape is determin
by the elastic force balance condition (¹W •s(n);0), which
leads to networklike or spongelike morphology. In the init
and late stages of phase separation wheretd@t ts , on the
other hand, the interface energy dominates the domain sh
sincem;0.

IX. UNIVERSALITY OF SPONGE MORPHOLOGY
CHARACTERISTIC OF A MIXTURE HAVING BULK

COMPRESSION MODES

A. Universality of sponge morphology

Here we discuss the universal nature of a spongelike m
phology ~or the formation of a continuous structure by
minority phase! and its physical origin. It is known that ge
undergoing a volume-shrinking phase transition forms
bubblelike structure@31,33,34#. The competition between
phase separation and gelation or a glass transition also ca
a spongelike morphology@35–37#. The physical origin of the
appearance of a honeycomb structure in plastic foams~e.g.,
polystyrene foam and urethane foam! is also similar to ours.
All these processes have a few common features.~i! A mix-
ture contains a fluid as a component.~ii ! Holes of a less
viscoelastic fluid phase~gas in plastic foam, water in ge
solvent in polymer solution, and so on! are nucleated to
minimize the elastic energy associated with the formation
a heterogeneous structure in an elastic medium.~iii ! Then, a
more viscoelastic phase decreases its volume with time. T
volume shrinking process is dominated by the transfer~dif-
fusion or flow! of a more mobile component under stre
fields, from a more viscoelastic phase to a less viscoela
phase. The above picture suggests the possibility that a s
gelike structure is theuniversal morphologyfor phase sepa-
ration in systems in which only one component asymme
cally has elasticity stemming from either topologic
connectivity or attractive interaction.

We also point out@6# the similarity of these patterns in
condensed matter to the spongelike structure of the univ
~the large-scale galaxy distribution! @38#. We speculate tha
the gravitational attractive interaction, which is stronger b
tween heavier matter, may play a role similar to the elas
network in producing the spongelike large-scale structu
This explanation seems to be consistent with a standard
ture of the universe evolution~a gravitational-instability
model! that such a heterogeneous structure develops
gravitational amplification of density fluctuations.

This universal appearance of sponge structures in
phase separation of these systems originates from the vo
phase transition, or, more strictly, the elastic phase sep
tion of a dynamically asymmetric mixture that is compos
of a network-forming component and a fluid (such as a liq
and a gas). The elastic network can be a real one as in g
~permanent network!, and polymer solutions~transient net-
work!, or a virtual one due to attractive interactions. In t
former, a real structure having large internal degrees of fr
dom can store the elastic energy for bulk compression, w
in the latter the virtual network due to attractive interactio
can also store the elastic energy. In this sense, we can
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4460 56HAJIME TANAKA
clude that the existence of both the component having a b
~relaxation! modulus and the fluid component is a prereq
site for the formation of a spongelike structure due to
volume shrinking of one phase.

For example, such phenomena are never observed in
mixtures, except for the case where the mobility is stron
dependent upon the composition@39#. Phase separation o
elastic solid mixtures~e.g., metal alloys! does not accom-
pany a drastic volume change of each phase if there is
strong composition dependence of mobility. This differen
causes a marked contrast between elastic phase separat
solid mixtures and viscoelastic phase separation; in
former, a softer phase always forms a continuous phas
minimize the total elastic energy@14#, in contrast to the lat-
ter.

B. Physical origin of volume shrinking

We briefly discuss the physical meaning of the above
teria for the formation of a sponge structure, or relative v
ume shrinking of a more viscoelastic phase. This is relate
the fact that in a two-fluid model¹W •vW k needs not be zero
even under the incompressible condition¹W •vW 50 for the av-
erage velocity. There are three important factors in this pr
lem: ~i! whether or not the componentk is compressible in a
mixture, ~ii ! whether or not¹W •vW k is large enough, and~iii !
whether or not the change in¹W •vW k is properly coupled with
the stress.

Condition~i! is usually satisfied, since we can change
spatial configuration of one component arbitrarily in a tw
component mixture, in general. Condition~ii ! is satisfied
only for a system containing a fluid as its component.
nally, condition~iii ! is satisfied only when there exist attra
tive interactions between the components. In a simple fl
mixture, for example,¹W •vW k is not coupled with the elastic
stress even if there is a difference in viscosity between
two components. In relation to this problem, we consider
case of a mixture whose components have different g
transition temperatures as an example. If only one com
nent becomes viscoelastic, the deformation of this com
nent, which is described byk i j

(k) and¹W •vW k, causes the elasti
stress. Thus the more viscoelastic phase becomes the m
phase and forms the spongelike structure, as experimen
observed@6#. To prevent usual spinodal decomposition fro
taking place, the bulk modulus should be sufficiently larg
The initial growth of the concentration fluctuation has to
suppressed mainly by¹W •vW k . For example, this is realized b
the formation of a transient interaction network.

We believe that the bulk mechanical relaxation modu
K(t) plays an essential role in fluctuation suppression
volume shrinking, while the bulk osmotic modulusKos does
not play a primary role. The interactions can have any orig
including entropic and energetic ones. The long-range na
of the elastic interaction in a more viscoelastic phase is
rectly related to how efficiently the fluctuation is suppress
and the volume of the relevant phase can be changed
thus, its ability to form a spongelike structure.

In relation to the above, it should be mentioned that
strong composition dependence of the mobility has a sim
effect @39#, since it slows down the diffusion process in th
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slow-component-rich region selectively. Thus a similar b
havior of the phase inversion has been observed even in
framework of a solid model~modelB) @39#. As discussed in
Sec. V B, the physical factor responsible for the asymme
stress division in a fluid mixture is dynamic asymmetry b
tween the two components of a mixture. This strongly in
cates that the most essential physical origin of volu
shrinking behavior and the resulting phase inversion is
coexistence of ‘‘asymmetry in mobility between the tw
components of a mixture’’ and ‘‘attractive interactions,’’ ir
respective of whether a mixture is solid or fluid.

C. Roles of shear relaxation modulus on the formation
of a networklike structure

We have already discussed the roles of the bulk relaxa
modulus, namely, the suppression of the homogene
growth of concentration fluctuations. Here we focus our
tention on the roles of the shear relaxation modulus. An
portant fact is that the bulk relaxation modulus is close
related to the diffusion while the shear relaxation modulus
not: The bulk stress gradient¹W •sB , is usually~at least in the
initial stage! in the same orientation as the osmotic stre
gradient¹W •P, since both are related to the diagonal part
the deformation velocity¹W •vW r , as described above. On th
other hand, the shear stress gradient¹W •sS is usually not in
the same orientation as¹W •P, since it is related to the off-
diagonal part of the deformation velocity. Thus we belie
that the shear relaxation modulus plays a dominant role
the formation of a networklike structure in the intermedia
stage of viscoelastic phase separation: The overlappin
stress fields having spherical symmetry around spherical
vent holes induce a deformation of shear type. This ini
spherical symmetry of the stress field is characteristic of b
stress fields coupled with¹W •v r

W . The shear deformation
causes shear stress fields through the shear relaxation m
lus. Thus the thin part of a more viscoelastic phase can s
port the shear stress and be elongated further. In other wo
the existence of a shear relaxation modulus is responsible
the formation of a networklike pattern composed of high
elongated thin structures@21#. We believe that without the
shear relaxation modulus, the networklike pattern w
threadlike structures can never be formed.

D. Difference in elastic effects between solid and fluid systems

Here we discuss the difference in phase-separation m
phology between elastically asymmetric solid mixtures@28#
and dynamically asymmetric fluid mixtures. In the diffusio
dominated process, the system approaches the final equ
rium state to reduce the total free energy including the ela
energy@see Eq.~30!#. As a result, the morphology that min
mizes the elastic energy is selected. This is the case of s
mixtures having only elastic asymmetry but no dynam
asymmetry. In relation to this, it should be noted that t
solid mixture having dynamic asymmetry behaves entir
differently ~see e.g., Ref.@39#!.

In the flow-dominated process, on the other hand,
force balance condition plays an essential role in pattern
lection @see Eq.~23!#. As a result, the morphology itself i
determined by the force balance condition. The asymme
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stress division leads to a spongelike structure, where
more viscoelastic phase forms a continuous network
structure to support the stress. Further, the two-fluid na
makes the volume change of phases possible. Thus we
say that dynamic asymmetry is a prerequisite to the ph
inversion, irrespective of whether material is solid or fluid

X. CONCLUSION

In summary, we obtain a general model of viscoelas
phase separation on the basis of a two-fluid model: We d
onstrate that the bulk relaxation modulus plays an impor
role in viscoelastic phase separation even in polymer s
tions. Our recent simulations based on the viscoelastic m
indicates the importance of this bulk mode@21#. Inclusion of
this effect makes a viscoelastic model quite general: T
viscoelastic model can describe phase separation or cri
phenomena in any isotropic condensed matter without
exception, if there is no coupling with additional order p
rameter.

Although the viscoelastic model is a quite general mo
of critical phenomena and phase separation, the critical
havior of this model may be intrinsically nonuniversal in t
sense that internal slow modes of the material can affect
critical dynamics even near the critical point. This proble
needs further studies to check whether the dynamic uni
sality practically breaks in a mixture having strong dynam
asymmetry between its components, or not@5#.

As a straightforward extension of the stress division
polymer mixtures@12#, we also propose a simple relatio
describing how the stress is divided by the two compone
on the basis of the idea that the mechanical coupling betw
a component and the mean-field rheological environmen
only due to the friction between them. We also point out t
the relation is not useful for a mixture whose compone
have different mechanisms of the molecular motion.

We also show that the characteristic features of viscoe
tic phase separation can be well explained by the concep
‘‘order-parameter switching’’ between composition and d
formation tensor.

We discuss the universal features of spongelike struct
observed in various materials, and demonstrate that there
common physical origin that is explained by the framewo
of our viscoelastic model of phase separation. It is conclu
that the most essential physical origin of volume shrink
behavior, and the resulting sponge structure, is the coe
ence of ‘‘asymmetry in mobility between the two comp
nents of a mixture’’ and ‘‘attractive interactions,’’ irrespe
tive of whether a mixture is solid or fluid. In relation to thi
.
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we would like to point out that phase inversion is also o
served in a recent simulation of modelB, including the
strong composition dependence of the mobility@39#. We be-
lieve that this is the only way to introduce dynamic asy
metry into a solid model. The relation between our mod
and their model and the underlying physics of their simi
behavior@21,39# will be discussed in detail elsewhere.
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APPENDIX: COMMENTS ON APPLICATIONS
OF VISCOELASTIC PHASE SEPARATION

IN MATERIAL SCIENCE

We briefly discuss the application of the spongelike m
phology observed in viscoelastic phase separation. Altho
a spongelike structure appears only transiently in viscoela
phase separation, this structure can be frozen by suit
methods:~i! simultaneous evaporation of a solvent for
polymer solution during phase separation,~ii ! a further
quench of a system belowTg , and ~iii ! a combination of
other processes such as cross linking reaction. We bel
that the spongelike structures reported in the literature@35–
37,40,41# are induced primarily by the mechanism describ
here. In relation to this, we point out that some spon
phases have periodic structures~see, e.g., Ref.@41#!, while
others do not, as in our case. This can be explained by
manner of nucleation of solvent holes: only when nucleat
is heterogeneously induced with a high density in a sh
period can a periodic sponge structure be formed by
long-range elastic interaction between solvent holes~corre-
lated nucleation!. We also point out that polymerization
induced phase separation may lead to a networklike struc
of a minority phase if there is a certain degree of dynam
asymmetry induced by the polymerization of a componen

In the common sense view of conventional phase sep
tion, a minority phase never forms a continuous phase,
forms only an isolated phase@1#. However, our present stud
indicates the possibility that we can intentionally form
spongelike continuous structure of the minority phase o
more viscoelastic phase for any dynamically asymme
mixture.
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